
56 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

Requirements:
The Key to
Sustainability
Christoph Becker, University of Toronto

Stefanie Betz, Karlsruhe Institute of Technology

Ruzanna Chitchyan, University of Leicester

Leticia Duboc, State University of Rio de Janeiro

Steve M. Easterbrook, University of Toronto

Birgit Penzenstadler, California State University, Long Beach

Norbert Seyff, University of Applied Sciences
and Arts Northwestern Switzerland

Colin C. Venters, University of Huddersfield

// Software’s critical role in society demands a

paradigm shift in the software engineering mind-set.

This shift is driven by requirements engineering. //

SOFTWARE SYSTEMS are a major
driver of social and economic activ-
ity. Software engineering (SE) tends
to focus on the technical elements—
artificial systems with clear bound-
aries and identifiable parts and con-
nections, modules and dependencies.
But software systems are embedded

in other technical systems and in so-
cioeconomic and natural systems.
This embedding is obvious when the
interaction is explicit, such as envi-
ronmental monitoring or flight con-
trol software.

However, software-intensive sys-
tems have become so essential to

societies that the resulting sociotech-
nical systems’ boundaries and inter-
actions are often hard to identify.
For example, communication, travel
booking, and procurement systems
influence the socioeconomic and
natural environment through far-
reaching effects on how we form re-
lationships, how we travel, and what
we buy. The engineering process
rarely makes these effects explicit.
Their lack of visibility makes assess-
ing a software system’s long-term and
cumulative impacts difficult.

Designing for sustainability is a
major challenge that can profoundly
change SE’s role in society. But what
does it mean to establish sustain-
ability as a major concern in SE? As
software engineers, we’re responsible
for our software’s long-term conse-
quences, irrespective of the primary
purpose of the system we’re design-
ing. Requirements are the key lever-
age point for practitioners who want
to develop sustainable software-
intensive systems. Here, we pre sent
two examples that illustrate the
changes needed in SE and show how
considering sustainability explicitly
will affect requirements activities.

Sustainability in
Software Engineering
Sustainability is the capacity to en-
dure, so a system’s sustainability de-
scribes how well it will continue to
exist and function, even as circum-
stances change. Sustainability has of-
ten been equated with environmental
issues, but it’s increasingly clear that
it requires simultaneous consider-
ation of environmental resources, so-
cietal and individual well-being, eco-
nomic prosperity, and the long-term
viability of technical infrastructure.

A technical system’s sustainabil-
ity differs considerably from that of
a socioeconomic system. Software

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 57

engineers tend to focus on sustain-
ability’s technical dimension, in
which it’s simply a measure of the
software system’s longevity.1 How-
ever, to understand broader sustain-
ability issues, we must ask which sys-
tem to sustain, for whom, over which
time frame, and at what cost.2 This
involves five interrelated dimensions:3

• The individual dimension covers
individual freedom and agency
(the ability to act in an environ-
ment), human dignity, and ful-
fillment. It includes individuals’
ability to thrive, exercise their
rights, and develop freely.

• The social dimension covers re-
lationships between individuals
and groups. For example, it cov-
ers the structures of mutual trust
and communication in a social
system and the balance between
conflicting interests.

• The economic dimension covers
financial aspects and business
value. It includes capital growth
and liquidity, investment ques-
tions, and financial operations.

• The technical dimension covers
the ability to maintain and evolve
artificial systems (such as soft-
ware) over time. It refers to main-
tenance and evolution, resilience,
and the ease of system transitions.

• The environmental dimension
covers the use and stewardship
of natural resources. It includes
questions ranging from immedi-
ate waste production and energy
consumption to the balance of
local ecosystems and climate
change concerns.

Complex software-intensive sys-
tems can affect sustainability in any
of these dimensions. Changes in one
system, in one dimension, often have
impacts in other dimensions and other

systems. For example, consider a hard-
to-maintain software system (technical
sustainability). Excessive maintenance
costs affect the owning company’s fi-
nancial liquidity (social and economic
sustainability). This might limit its
growth and even threaten its survival
(economic sustainability).

Similar tradeoffs occur across
other dimensions. For example, car-
bon offsets incentivize environmen-
tally sustainable behavior through
tradeoffs with the economic dimen-
sion. The triple-bottom-line perspec-
tive requires a business to account for

social and environmental as well as
financial outcomes.4 The correspond-
ing business practices have led to a
surge in the number of social enter-
prises, which achieve survival rates
above average for new businesses.5

Increasingly, software engineers
need to understand the effects by
which software system design de-
cisions can enable or undermine
the sustainability of socioeconomic
and natural systems over time (see
the sidebar, “Classifying the Sys-
temic Effects of Software”). Be-
cause sustainability is inherently
multidisciplinary, any effort to de-
fine it involves concepts, principles,
and methods from a range of disci-
plines and makes an integrated view
crucial for effective system design.
The notion of sustainability design
brings these concerns together using
systems-thinking principles (see the
sidebar, “Sustainability Principles
for Software Engineering”).

A Tale of Two Projects
A software system’s impact on its
environment is often determined by
how the software engineers under-
stand its requirements. This impact’s
foundation is set in the decisions
on which system to build (if any at
all), the choices of whom to ask and
whom to involve, and the specifica-
tion of what constitutes success.

The following examples describe
two projects to develop a procure-
ment system that supports purchas-
ing products and contracting services
in a private company in the energy

sector. Products, services, and sup-
pliers must pass the company’s ap-
proval process and be registered in
the system before a purchase. This
approval considers the supplier’s re-
liability, capacity to deliver, and, in
some cases, adherence to interna-
tional standards of environmental
management, health, and safety.

The examples are inspired by a
real-world project.6 The first exam-
ple reflects typical software projects,
which don’t use sustainability de-
sign. The second shows what could
happen if a project applied sustain-
ability design. Terms in italics in-
dicate aspects that are common to
both projects, for easy comparison.

Development without
Sustainability Design
The project’s purpose is to maximize
the organization’s procurement effi-
ciency, increase the financial return,
and ensure suppliers’ compliance

We need to consider systems’ immediate
features and effects and their longer-

running aggregate and cumulative impact.

58 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

with certain rules. The criteria for
selecting products and services focus
on price, delivery time, and payment
conditions.

Using a stakeholder influence ma-
trix, the project leader focuses on
those stakeholders who can “stop

the show.” A few influential stake-
holders determine the project scope
early on so that the project can fo-
cus on a minimal design scope to
maximize project speed. The proj-
ect team moves swiftly to determine
the boundaries of the software to be;

the only scoping questions revolve
around the software’s interfaces
with neighboring systems.

The project’s success criteria
are to develop and deliver the sys-
tem within the given budget and
time. The question of feasibility
centers on the software project in-
vestment’s expected amortization
period. Risk analysis focuses on eco-
nomic risks that could inhibit project
completion.

Requirements elicitation requests
stakeholders’ input through struc-
tured forms to identify what they
want the system to do. Additionally,
the team analyzes previous systems
and consults business process docu-
ments. Requirements prioritization
is determined by functional require-
ments and economic constraints and
is completed quickly because the
core stakeholder group has a strong
consensus.

The requirements specification is
documented following the software
requirements specifications template
from IEEE Standard 830. System
measurement and monitoring em-
ploy performance and availability in-
dicators. The system is completed on
time and within budget and shows
a reasonably low rate of faults, so
the project is considered a success at
completion.

Development
with Sustainability Design
Consider conducting the same proj-
ect while treating sustainability as a
first-class concern in line with sus-
tainability design principles (see the
sidebar, “Sustainability Principles
for Software Engineering”).

While discussing the project’s
purpose, the initial project team
discusses the company’s values
and responsibilities and identi-
fies opportunities to support the

CLASSIFYING
THE SYSTEMIC EFFECTS
OF SOFTWARE
Many critical effects in sociotechnical systems play out over time. So, we need to
consider not just our systems’ immediate features and effects but their longer-
running aggregate and cumulative impact. We distinguish three orders of effects.1

Immediate effects are the direct effects of the production, use, and disposal
of software systems. This includes the immediate benefit of system features and
the full life-cycle impacts, such as a life-cycle assessment (LCA) would include.
An LCA evaluates the environmental impact of a product’s life from the extrac-
tion of raw materials to its disposal or recycling.

Enabling effects arise from a system’s application over time. This includes not
only opportunities to consume more (or fewer) resources but also other changes
induced by system use.

Structural effects represent “persistent changes observable at the macro lev-
el. Structures emerge from the entirety of actions at the micro level and, in turn,
influence these actions.”1 Ongoing use of a new software system can lead to
shifts in capital accumulation; drive changes in social norms, policies, and laws;
and alter our relationship with the natural world.

Consider Airbnb.com. Its immediate effects include resources consumed and
jobs created during its development, energy consumed during its deployment,
and the room renting and booking services it offers. Its enabling effects include
changes in how its users make travel arrangements as alternatives to hotel
bookings and in how property owners rent out space.

These enabling effects (the “sharing economy”) have been both praised and
criticized for their far-reaching structural impacts. For example, Airbnb repre-
sents a substantial share of the buy-to-let market in major cities. The continuing
price surges in these cities’ hot spots have been linked to the density of buy-to-
let properties. Many of these exist only because of the arbitrage that services
such as Airbnb.com provide. The system enables transactions that provide a
higher return on investment than long-term rentals. This has caused major con-
cerns in several large cities.

Reference
 1. L.M. Hilty and B. Aebischer, “ICT for Sustainability: An Emerging Research Field,” ICT Innova-

tions for Sustainability, Springer, 2015, pp. 3–36.

 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 59

company’s sustainable develop-
ment. For example, the system can
support sustainability in the supply
chain by making transparent the
carbon footprint of purchases and
facilitating the selection of provid-
ers who apply sustainable practices.
This doesn’t change the overall
project objectives, but it influences
subsequent steps.

The scope of analysis starts with
an inclusive, integrated view of the
procurement processes, material
flows into the company, and the lo-
cal community’s social and political
environment. When defining possi-
ble system boundaries, the team ex-
periments with multiple perspectives
and works jointly with the procure-
ment department and others.

The team expands the set of stake-
holders and draws on knowledge be-
yond the team by using a stakeholder
impact analysis. This analysis con-
siders enabling and structural effects
to identify those most affected by the
project, including those external to
the company. Stakeholders include
local supplier representatives, service
delivery organizations, process ana-
lysts, the chief technology officer,
and the strategic-planning and fore-
sight group.

To keep the number of stakehold-
ers manageable, a sustainability ex-
pert acts as a surrogate stakeholder
for others in the community and the
further environment that the system
might affect. A team member is as-
signed to each of the five sustain-
ability dimensions so that responsi-
bility for identifying possible effects
is clear and effective communica-
tion with additional stakeholders
can take place. These team mem-
bers consult relevant experts in areas
such as supply chain sustainability,
carbon accounting, and socially re-
sponsible procurement. They also

consult anthropologists analyzing
and interpreting current technologi-
cal developments and their impact
on society.

The team agrees that the proj-
ect’s success criteria are not re-
stricted to whether it’s delivered on

time and within budget, but will be
measured and monitored over the
36 months after project comple-
tion. In this period, the team will
measure a set of indicators covering
the five sustainability dimensions. It
will try to measure

SUSTAINABILITY
PRINCIPLES FOR
SOFTWARE ENGINEERING

The following principles are based on “Sustainability Design and Software: The
Karlskrona Manifesto.”1

• Sustainability is systemic; a system can never be treated in isolation from
its environment.

• Sustainability is multidimensional; the five key dimensions are economic,
social, environmental, technical, and individual.

• Sustainability is interdisciplinary; sustainability design in software engineer-
ing requires an appreciation of concepts from other disciplines and must
work across disciplines.

• Sustainability transcends the software’s purpose; any software can impact
the sustainability of its socioeconomic, sociotechnical, cultural, and natural
environments.

• Sustainability is multilevel; it requires us to consider at least two spheres
during system design: the system under design and its sustainability, and
the wider system of which it will be part.

• Sustainability is multi-opportunity; it requires us to seek interventions that
have the most leverage on a system2 and to consider the opportunity costs.

• Sustainability involves multiple timescales; it requires long-term thinking to
address the timescales on which sustainability effects occur.

• Sustainability isn’t zero-sum; changing a system’s design to consider the
long-term effects doesn’t automatically imply making sacrifices now.

• System visibility is a necessary precondition and enabler for sustainability
design. This is because only a transparent status of the system and its
context, made visible at different abstraction levels and perspectives, can
enable system designers to make informed responsible choices.

For more on this, see www.sustainabilitydesign.org.

References
 1. C. Becker et al., “Sustainability Design and Software: The Karlskrona Manifesto,” Proc. 37th

IEEE Int’l Conf. Software Eng. (ICSE 15), 2015, pp. 467–476.

 2. D.H. Meadows, Leverage Points: Places to Intervene in a System, Sustainability Inst., 1999.

60 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

• technical debt,
• social reputation and im-

proved relations with the local
community,

• individual aspects such as pri-
vacy compliance and the satis-
faction of those involved in the
procurement process,

• environmental aspects such as
the total carbon footprint of the
products and services acquired,
and

• amortization of the project costs
and improved cost–benefit rela-
tions in procurement.

During risk analysis, the team
considers internal and external risks
related to systemic effects in all five
dimensions. For example, consider-
ing the evolving regulations on en-
vironmental accountability as a risk,
the team develops a set of transpar-
ency requirements for the system. It
also identifies uncertainties about
future shifts in procurement as sus-
tainable products become more com-
petitive. So, it includes a feature to
monitor these uncertainties.

During requirements elicitation,
the team employs participatory tech-
niques. The inclusive perspective lets
the project leverage contributions
from a broader set of stakeholders,
including local service providers. In
a series of workshops, the team uses
a sustainability reference goal model
to derive specific sustainability goals
for the project and align them with
other system goals, while deriving
extended usage scenarios with the
local community representatives.

The resulting requirements speci-
fication is based on a template that
includes checklists for sustainability
criteria and standards compliance in
all five dimensions. The document is
circulated among all the stakehold-
ers and is shared with regulatory

agencies to demonstrate that the
project meets relevant sustainability
rules. So, it’s also used more actively
in subsequent stages.

Sustainability Debt
The system resulting from this pro-
curement project is different when
development takes into account sus-
tainability principles and therefore
long-term consequences.

Focusing on sustainability de-
sign, software engineers must adopt
a mind-set quite different from the
puzzle-solving attitude often found
in engineering and business. Now,
the objective is to identify and under-
stand “wicked problems”: problems
that are deeply embedded in a com-
plex system with no definitive formu-
lation and no clear stopping rule. In
such cases, every solution changes the
nature of the problem, so little oppor-
tunity exists for trial-and-error learn-
ing.7,8 Instead, we need an adaptive,
responsive, and iterative approach
emphasizing shared understanding.

Figure 1 highlights selected im-
mediate, enabling, and structural ef-
fects of the procurement system in
the five sustainability dimensions.
Consider a system feature that tracks
individual products’ carbon foot-
print, letting users choose products
with lower footprints. The com-
pound structural effect in the eco-
nomic dimension can benefit local
suppliers with environmentally sus-
tainable production and can lead to
a reduced carbon footprint.

The diagram in Figure 1 sup-
ports interactive collaboration among
stakeholders to discover, document,
and validate the system’s potential ef-
fects. Not all effects will be positive.
For example, automating product se-
lection rules to minimize the carbon
footprint takes away the manager’s
freedom to make decisions in the

procurement process.9 This can re-
duce mutual trust between the orga-
nization’s members.

The diagram also facilitates a
conversation about sustainability
debt: decisions made for the present
situation have invisible effects that
accumulate over time in each of the
five dimensions.10 When we increase
energy consumption, reduce indi-
vidual privacy, impose technical bar-
riers, or incur additional financial
costs, we incur debts in these dimen-
sions to different stakeholders. Mak-
ing these effects visible is the first
step to understanding and consider-
ing them in system design decisions.

Requirements
Are the Key
In those two projects, a series of
decision points occurred during
system design. Many of them were
requirements-engineering activities
that occurred repeatedly in all itera-
tions throughout the projects. Each
decision influenced the decision
space of subsequent choices and pro-
foundly affected the system and its
effects. Table 1 highlights how key
activities change when we consider
sustainability design principles.

Requirements’ leverage becomes
clear when we consider their rela-
tionships with engineering tech-
niques. We develop techniques to
quantify, construct, and test arti-
facts and to control whether the
results fall in an acceptable range.
However, for design concerns such
as usability, performance, maintain-
ability, or sustainability, such tech-
niques are only applied once a need
has been identified. Without such a
need, the engineering techniques will
remain unused and hence have no ef-
fect on the project.

For example, techniques for
increasing technical sustainability

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 61

abound, ranging from architec-
tural design patterns to documenta-
tion guidelines. Yet, because apply-
ing these techniques often involves
an up-front investment of effort, it
occurs only when a longer life ex-
pectancy of a system is recognized

and expressed. On the other hand,
a stated requirement for which no
technique yet exists will lead to an
identi� ed gap in technological abil-
ity. This means that in practice,
systemic changes to the activities in
Table 1 will dominate the effects of

whatever techniques we develop to
support these activities.

So, requirements engineers play
a key role in sustainability. As “sus-
tainability engineers,” they go be-
yond a narrow system perspective
and follow an interdisciplinary,

ECONOMIC

SOCIAL

TECHNICAL

EN
VI

RO
NM

EN
TA

L

STRUCTURAL EFFECT

ENABLING EFFECT

IMMEDIATE EFFECT

INDIVIDUAL

The procurement
system’s life-cycle
costs can be a burden.

Markets can reward
environmentally
sustainable
production.

The local economy
can be strengthened.

Transparency of
procurement
facilitates business
interaction with local
suppliers.

Community
relationships
can be improved.

Trust within
the company
could be
diminished.

The individual choice of
decision makers in the
supply chain would decrease.

The carbon footprint
can be reduced.

System quality:
maintainability

System feature:
show products’
carbon footprint

Users can choose
products with
low carbon
footprints.

System evolution
can increase
technical debt.

The system makes
the procurement
process transparent
to local suppliers.

The system could
impose strict rules
on product selection.

Procurement
system

FIGURE 1. Selected immediate, enabling, and structural effects of the procurement system in the � ve sustainability dimensions. The

diagram supports interactive collaboration among stakeholders to discover, document, and validate the system’s potential effects.

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

systems-oriented, stakeholder- focused
approach, supported by higher
management and executives. Their
task is to understand the nature of
software-intensive systems and the
impact those can have on their social,

technical, economic, and natural en-
vironments and the individuals in
those environments.

This responsibility is reflected
in the new UK Standard for Profes-
sional Engineering Competence,

which specifies that engineers are
to “act in accordance with the prin-
ciples of sustainability, and prevent
avoidable adverse impact on the en-
vironment and society.”11 It’s up to
SE curricula developers to equip

TA
B

L
E

 1 Table 1. Software engineering practices for sustainability.*

Task Standard current practice Focus of future practice

Mind-setting The world is a puzzle, and we should solve
the problem.

The world is complex, and we should first understand the
dilemmas.

Determination of the
project objective and
the system purpose,
boundary, and scope

Focus on the immediate business need and
key system features. Don’t question the
project’s or system’s purpose.

Emphasize how the project can affect sustainability in all
dimensions. Strive to advance sustainability in multiple
dimensions simultaneously. Experiment with different system
boundaries to understand the alternative impacts.

External constraint
identification

See constraints as imposed by the direct
environment of the system and its technical
interfaces. Minimize the constraints
considered, but include legal, safety,
security, technical, and business resources.

See constraints in each dimension as opportunities. Look for
constraints from additional sources, starting with company
corporate-social-responsibility policies, legislation, and
sustainability standards.

Stakeholder
identification

Minimize the number of stakeholders
involved, and focus on those who have
influence. Focus on internal stakeholders,
and exclude unreachable stakeholders.

Maximize stakeholder involvement in an inclusive perspective
integrating external stakeholders, and involve those who
are affected. Assign a dedicated role to be responsible for
sustainability, and introduce surrogate stakeholders to represent
outside interests.

Success criteria
definition

Focus on the financial bottom line at project
completion. Measure the business outcome
and financial return on investment.

Focus on advancing multiple dimensions simultaneously,
including financial aspects, and take into account that most
effects occur after project completion.

Requirements
elicitation

Focus on the features and immediate effects
the stakeholders want.

Help the stakeholders understand the system’s enabling effects.
Use creativity techniques and long-term scenarios to forecast
the potential structural impact.

Risk identification Identify risks that threaten timely project
completion within the budget.

Include the effects on the system’s wider environment. Include
enabling and structural effects and risks that can develop over
time.

Tradeoff analysis View tradeoff analysis as a prioritization
and selection problem, and let the key
stakeholders decide.

Strive to transform sustainability tradeoffs into mutually
beneficial situations. Ensure that a wider range of stakeholders
(or their surrogates) discuss sustainability tradeoffs.

Go/no-go decision Base the decision on feasibility, financial
costs and benefits, and risk exposure
to project participants—that is, internal
stakeholders.

This continues to be an internal business decision but is
documented to show to external audiences that it took into
account sustainability indicators and enabling effects. The
decision is based on a consideration of positive and negative
effects in all five dimensions.

Requirements
validation

Let key stakeholders verify that their
interests are captured.

Ensure broad community involvement focused on understanding
effects.

Project completion Verify whether success criteria are met on
the completion date. After that, focus on
maintenance and evolution.

Evaluate the effects in all five dimensions over a certain time
frame after completion, aligned with the expected timescale of
effects.

Requirements
documentation

Current templates ignore long-term effects
and sustainability considerations.

Templates require information about sustainability as a design
concern and support analysts with checklists.

* For a description of the dimensions mentioned in the table, see the section “Sustainability in Software Engineering.”

 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 63

future software engineers with the
competences required to simultane-
ously advance goals in all five di-
mensions, beyond the technical and
economic.

For a long time, concerns about
such effects have taken a backseat in
SE, but this is changing as standards
are being adjusted. For example, the
working group WG42 on ISO/IEC
42030 (Architecture Evaluation) is
discussing energy efficiency and en-
vironmental concerns at the soft-
ware architecture level. In addition,
the IEEE P1680.1 Standard for En-
vironmental Assessment of Personal
Computer Products is being revised.

Although these steps are impor-
tant, a full consideration of all five
sustainability dimensions is needed
on the level of quality models, system
documentation templates, and the
analysis of systemic effects throughout
system life-cycle stages. Requirements
engineers will often be responsible for
introducing relevant standards in each
of the five dimensions into the elicita-
tion and specification process. To sup-
port this, revisions of the ISO 25000
series should incorporate sustainabil-
ity considerations related to software
systems’ quality attributes. In addi-
tion, ISO 29148 should acknowledge
the importance of system character-
istics beyond interaction with human
users and encourage consideration of
the systemic effects of software sys-
tems in RE.

S oftware’s critical role in so-
ciety demands a paradigm
shift in the SE mind-set.

Sustainability design emphasizes
an appreciation of wicked problems
over a focus on puzzles and pieces,
systems thinking over computational
problem solving, and an integrated
understanding of systems over a

divide-and-conquer approach to sys-
tems analysis.

Although these challenging shifts
won’t come easy, taking such per-
spectives provides an opportunity
to stand out, an invitation to inno-
vate, and an occasion for software
engineers and companies to distin-
guish themselves with a unique sell-

ing point in a competitive market.
We also have the opportunity to help
shape broader sustainability policy. A
shift to a sustainable society requires
large-scale change both in govern-
ment policy and in engineering and
business practice; neither on its own
will suffice. But regulatory change is
much easier if it builds on established
best practices, so software practitio-
ners must take the lead.

If you agree that we, as software
engineers, have a responsibility for
the long-term impact of the systems
we design, the sustainability design
principles provide an opportunity to
get started. We can and should start
now, and practitioners can lead the
way. We need to collect experiences
in applying sustainability principles
in SE and learn from the process. An
important way to make this vision of
software as a force for sustainability
a reality is by cooperation between
industry and academia.

Successful collaborations to inte-
grate sustainability concerns into es-
tablished practices can significantly
and positively influence the long-term
effects of the systems we design. To fa-
cilitate this, we must do three things.

First, we must identify and tackle
causes of unsustainable software
design. For this, industry can invite
academics to research, analyze, and
reengineer their current development
processes and practices for improved
sustainability.

Second, we must develop exem-
plar case studies that demonstrate

the benefits of sustainability design
in SE. For this, early adopter indus-
trial collaborators can partner with
academics to apply research findings
such as those summarized in Table 1
and report on longer-term results.

Finally, we must build compe-
tences in the theory and practice of
sustainable design into the training
of all software engineers. Industry
can make the demand for software
practitioners trained in sustainabil-
ity principles explicit by requiring
specific competences from potential
employees. Researchers and educa-
tors should develop improved cur-
ricula that incorporate sustainabil-
ity principles and ensure that future
software professionals possess the
competences needed to advance sus-
tainability goals through SE.

Let’s get started.

Acknowledgments
This research is supported by the

Deutsche Forschungsgemeinschaft proj-

ect EnviroSiSE (PE2044/1-1); FAPERJ

(210.551/2015); CNPQ (14/2014); NSERC

(RGPIN-2014-06638); the European So-

cial Fund; the Ministry for Science, Re-

search, and the Arts Baden-Württemberg;

Software’s critical role in society
demands a paradigm shift in the
software engineering mind-set.

64 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

CHRISTOPH BECKER is an assistant

professor at the University of Toronto, where

he leads the Digital Curation Institute, and

a senior scientist at the Vienna University of

Technology. His research focuses on sustain-

ability in software engineering and informa-

tion systems design, digital curation and digi-

tal preservation, and digital libraries. Becker

received a PhD in computer science from the

Vienna University of Technology. Contact him

at christoph.becker@utoronto.ca.

STEVE M. EASTERBROOK is a professor

in the University of Toronto’s Department

of Computer Science and a member of the

School of the Environment and the Centre

for Global Change Science. His research fo-

cuses on climate informatics—speci� cally,

applying computer science and software

engineering to the challenge posed by global

climate change. Easterbrook received his

PhD in computing from Imperial College Lon-

don. Contact him at sme@cs.toronto.edu.

STEFANIE BETZ is a senior research

scientist in the Karlsruhe Institute of Tech-

nology’s Department of Applied Informat-

ics and Formal Description Methods. Her

research centers on sustainable software

and systems engineering, particularly from

the perspective of requirements engineer-

ing and business process management.

Betz received a PhD in applied informatics

from the Karlsruhe Institute of Technology.

Contact her at stefanie.betz@kit.edu.

BIRGIT PENZENSTADLER is an assistant

professor of software engineering at Cali-

fornia State University, Long Beach. Her re-

search focuses on software engineering for

sustainability and resilience; she leads the

university’s Resilience Lab. Penzenstadler

received a habilitation in environmental

sustainability in software engineering from

the Technical University of Munich. Contact

her at birgit.penzenstadler@csulb.edu.

RUZANNA CHITCHYAN is a lecturer

in the University of Leicester’s Depart-

ment of Computer Science and a member

of the Centre for Landscape and Climate

Research. Her research centers on require-

ments engineering and architecture design

for software-intensive sociotechnical

systems and sustainability. Chitchyan

received a PhD in software engineering

from Lancaster University. Contact her at

rc256@leicester.ac.uk.

NORBERT SEYFF is a professor in the

School of Engineering and the Institute of

4D Technologies at the University of Applied

Sciences and Arts Northwestern Switzer-

land and a senior research associate in the

University of Zurich’s Department of Infor-

matics. His research focuses on require-

ments engineering and software modeling,

particularly on empowering and supporting

end-user participation in system develop-

ment. Seyff received a PhD in computer sci-

ence from Johannes Kepler University Linz.

Contact him at norbert.seyff@fhnw.ch.

LETICIA DUBOC is a lecturer in the State

University of Rio de Janeiro’s Department

of Computer Science and an honor-

ary research fellow at the University of

Birmingham. Her research focuses on

software system sustainability and scal-

ability, particularly from the perspective of

requirements engineering and early analysis

of software qualities. Duboc received a PhD

in computer science from University College

London. Contact her at leticia@ime.uerj.br.

COLIN C. VENTERS is a senior lecturer

in software systems engineering at the

University of Hudders� eld. His research

focuses on sustainable software systems

engineering from a software architecture

perspective for presystem understanding

and postsystem maintenance and evolution.

Venters received a PhD in computer science

from the University of Manchester. Contact

him at c.venters@hud.ac.uk.

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 65

and the Vienna Science and Technology

Fund (WWTF) through project Bench-

markDP (ICT2012-46). Special thanks to

our friend and colleague Sedef Akinli Ko-

cak, a PhD researcher at Ryerson Univer-

sity, for her contributions to this article.

References
 1. H. Koziolek, “Sustainability Evalu-

ation of Software Architectures: A

Systematic Review,” Proc. Joint ACM

SIGSOFT Conf.—QoSA and ACM

SIGSOFT Symp.—ISARCS on Qual-

ity of Software Architectures—QoSA

and Architecting Critical Systems—

ISARCS (QoSA-ISARCS 11), 2011,

pp. 3–12.

 2. J.A. Tainter, “Social Complexity and

Sustainability,” Ecological Complex-

ity, vol. 3, no. 2, 2006, pp. 91–103.

 3. B. Penzenstadler et al., “Safety,

Security, Now Sustainability: The

Nonfunctional Requirement for the

21st Century,” IEEE Software,

vol. 31, no. 3, 2014, pp. 40–47.

 4. J. Elkington, “Enter the Triple Bot-

tom Line,” The Triple Bottom Line:

Does It All Add Up? Assessing the

Sustainability of Business and CSR,

A. Henriques and J. Richardson, eds.,

Earthscan, 2004, pp. 1–16.

 5. “Who Lives the Longest? Busting the

Social Venture Survival Myth,” E3M,

2014; http://socialbusinessint.com

/wp-content/uploads/Who-lives-the

-longest_-FINAL-version2.pdf.

 6. C. Bom� m et al., “Modelling Sustain-

ability in a Procurement System: An

Experience Report,” Proc. IEEE

22nd Int’l Conf. Requirements Eng.

(RE 14), 2014, pp. 402–411.

 7. H.W. Rittel and M.M. Webber,

“Dilemmas in a General Theory of

Planning,” Policy Sciences, vol. 4,

no. 2, 1973, pp. 155–169.

 8. S. Easterbrook, “From Computa-

tional Thinking to Systems Thinking:

A Conceptual Toolkit for Sustain-

ability Computing,” Proc. 2nd Int’l

Conf. Information and Communica-

tion Technologies for Sustainability,

Atlantis Press, 2014; doi:10.2991

/ict4s-14.2014.28.

 9. J.A. Klein, “A Reexamination of

Autonomy in Light of New Manufac-

turing Practices,” Human Relations,

vol. 44, no. 1, 1991, pp. 21–38.

 10. S. Betz et al., “Sustainability Debt: A

Metaphor to Support Sustainability

Design Decisions,” Proc. 4th Int’l

Workshop Requirements Eng. for

Sustainable Systems (RE4SuSy 15),

2015; http://ceur-ws.org/Vol-1416

/Session2Paper4.pdf.

 11. UK Standard for Professional En-

gineering Competence (UK-SPEC),

Engineering Council, 2014.

IEEE Computer Society’s Conference Publishing Services (CPS) is now offering
conference program mobile apps! Let your attendees have their conference
schedule, conference information, and paper listings in the palm of their hands.

The conference program mobile app
works for Android devices, iPhone,
iPad, and the Kindle Fire.

CONFERENCES
in the Palm of Your Hand

For more information please contact cps@computer.org

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

