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// Software’s critical role in society demands a 

paradigm shift in the software engineering mind-set. 

This shift is driven by requirements engineering. //

SOFTWARE SYSTEMS are a major 
driver of social and economic activ-
ity. Software engineering (SE) tends 
to focus on the technical elements—
artificial systems with clear bound-
aries and identifiable parts and con-
nections, modules and dependencies. 
But software systems are embedded 

in other technical systems and in so-
cioeconomic and natural systems. 
This embedding is obvious when the 
interaction is explicit, such as envi-
ronmental monitoring or flight con-
trol software.

However, software-intensive sys-
tems have become so essential to 

societies that the resulting sociotech-
nical systems’ boundaries and inter-
actions are often hard to identify. 
For example, communication, travel 
booking, and procurement systems 
influence the socioeconomic and 
natural environment through far-
reaching effects on how we form re-
lationships, how we travel, and what 
we buy. The engineering process 
rarely makes these effects explicit. 
Their lack of visibility makes assess-
ing a software system’s long-term and 
cumulative impacts difficult.

Designing for sustainability is a 
major challenge that can profoundly 
change SE’s role in society. But what 
does it mean to establish sustain-
ability as a major concern in SE? As 
software engineers, we’re responsible 
for our software’s long-term conse-
quences, irrespective of the primary 
purpose of the system we’re design-
ing. Requirements are the key lever-
age point for practitioners who want 
to develop sustainable software-
intensive systems. Here, we pre sent 
two examples that illustrate the 
changes needed in SE and show how 
considering sustainability explicitly 
will affect requirements activities.

Sustainability in 
Software Engineering
Sustainability is the capacity to en-
dure, so a system’s sustainability de-
scribes how well it will continue to 
exist and function, even as circum-
stances change. Sustainability has of-
ten been equated with environmental 
issues, but it’s increasingly clear that 
it requires simultaneous consider-
ation of environmental resources, so-
cietal and individual well-being, eco-
nomic prosperity, and the long-term 
viability of technical infrastructure.

A technical system’s sustainabil-
ity differs considerably from that of 
a socioeconomic system. Software 
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engineers tend to focus on sustain-
ability’s technical dimension, in 
which it’s simply a measure of the 
software system’s longevity.1 How-
ever, to understand broader sustain-
ability issues, we must ask which sys-
tem to sustain, for whom, over which 
time frame, and at what cost.2 This 
involves five interrelated dimensions:3

• The individual dimension covers 
individual freedom and agency 
(the ability to act in an environ-
ment), human dignity, and ful-
fillment. It includes individuals’ 
ability to thrive, exercise their 
rights, and develop freely.

• The social dimension covers re-
lationships between individuals 
and groups. For example, it cov-
ers the structures of mutual trust 
and communication in a social 
system and the balance between 
conflicting interests.

• The economic dimension covers 
financial aspects and business 
value. It includes capital growth 
and liquidity, investment ques-
tions, and financial operations.

• The technical dimension covers 
the ability to maintain and evolve 
artificial systems (such as soft-
ware) over time. It refers to main-
tenance and evolution, resilience, 
and the ease of system transitions.

• The environmental dimension 
covers the use and stewardship 
of natural resources. It includes 
questions ranging from immedi-
ate waste production and energy 
consumption to the balance of 
local ecosystems and climate 
change concerns.

Complex software-intensive sys-
tems can affect sustainability in any 
of these dimensions. Changes in one 
system, in one dimension, often have 
impacts in other dimensions and other 

systems. For example, consider a hard-
to-maintain software system (technical 
sustainability). Excessive maintenance 
costs affect the owning company’s fi-
nancial liquidity (social and economic 
sustainability). This might limit its 
growth and even threaten its survival 
(economic sustainability).

Similar tradeoffs occur across 
other dimensions. For example, car-
bon offsets incentivize environmen-
tally sustainable behavior through 
tradeoffs with the economic dimen-
sion. The triple-bottom-line perspec-
tive requires a business to account for 

social and environmental as well as 
financial outcomes.4 The correspond-
ing business practices have led to a 
surge in the number of social enter-
prises, which achieve survival rates 
above average for new businesses.5

Increasingly, software engineers 
need to understand the effects by 
which software system design de-
cisions can enable or undermine 
the sustainability of socioeconomic 
and natural systems over time (see 
the sidebar, “Classifying the Sys-
temic Effects of Software”). Be-
cause sustainability is inherently 
multidisciplinary, any effort to de-
fine it involves concepts, principles, 
and methods from a range of disci-
plines and makes an integrated view 
crucial for effective system design. 
The notion of sustainability design 
brings these concerns together using 
systems-thinking principles (see the 
sidebar, “Sustainability Principles 
for Software Engineering”).

A Tale of Two Projects
A software system’s impact on its 
environment is often determined by 
how the software engineers under-
stand its requirements. This impact’s 
foundation is set in the decisions 
on which system to build (if any at 
all), the choices of whom to ask and 
whom to involve, and the specifica-
tion of what constitutes success.

The following examples describe 
two projects to develop a procure-
ment system that supports purchas-
ing products and contracting services 
in a private company in the energy 

sector. Products, services, and sup-
pliers must pass the company’s ap-
proval process and be registered in 
the system before a purchase. This 
approval considers the supplier’s re-
liability, capacity to deliver, and, in 
some cases, adherence to interna-
tional standards of environmental 
management, health, and safety.

The examples are inspired by a 
real-world project.6 The first exam-
ple reflects typical software projects, 
which don’t use sustainability de-
sign. The second shows what could 
happen if a project applied sustain-
ability design. Terms in italics in-
dicate aspects that are common to 
both projects, for easy comparison.

Development without  
Sustainability Design
The project’s purpose is to maximize 
the organization’s procurement effi-
ciency, increase the financial return, 
and ensure suppliers’ compliance 

We need to consider systems’ immediate 
features and effects and their longer-

running aggregate and cumulative impact.
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with certain rules. The criteria for 
selecting products and services focus 
on price, delivery time, and payment 
conditions.

Using a stakeholder influence ma-
trix, the project leader focuses on 
those stakeholders who can “stop 

the show.” A few influential stake-
holders determine the project scope 
early on so that the project can fo-
cus on a minimal design scope to 
maximize project speed. The proj-
ect team moves swiftly to determine 
the boundaries of the software to be; 

the only scoping questions revolve 
around the software’s interfaces 
with neighboring systems.

The project’s success criteria 
are to develop and deliver the sys-
tem within the given budget and 
time. The question of feasibility 
centers on the software project in-
vestment’s expected amortization 
period. Risk analysis focuses on eco-
nomic risks that could inhibit project 
completion.

Requirements elicitation requests 
stakeholders’ input through struc-
tured forms to identify what they 
want the system to do. Additionally, 
the team analyzes previous systems 
and consults business process docu-
ments. Requirements prioritization 
is determined by functional require-
ments and economic constraints and 
is completed quickly because the 
core stakeholder group has a strong 
consensus.

The requirements specification is 
documented following the software 
requirements specifications template 
from IEEE Standard 830. System 
measurement and monitoring em-
ploy performance and availability in-
dicators. The system is completed on 
time and within budget and shows 
a reasonably low rate of faults, so 
the project is considered a success at 
completion.

Development  
with Sustainability Design
Consider conducting the same proj-
ect while treating sustainability as a 
first-class concern in line with sus-
tainability design principles (see the 
sidebar, “Sustainability Principles 
for Software Engineering”).

While discussing the project’s 
purpose, the initial project team 
discusses the company’s values 
and responsibilities and identi-
fies opportunities to support the 

CLASSIFYING  
THE SYSTEMIC EFFECTS  
OF SOFTWARE
Many critical effects in sociotechnical systems play out over time. So, we need to 
consider not just our systems’ immediate features and effects but their longer-
running aggregate and cumulative impact. We distinguish three orders of effects.1

Immediate effects are the direct effects of the production, use, and disposal 
of software systems. This includes the immediate benefit of system features and 
the full life-cycle impacts, such as a life-cycle assessment (LCA) would include. 
An LCA evaluates the environmental impact of a product’s life from the extrac-
tion of raw materials to its disposal or recycling.

Enabling effects arise from a system’s application over time. This includes not 
only opportunities to consume more (or fewer) resources but also other changes 
induced by system use.

Structural effects represent “persistent changes observable at the macro lev-
el. Structures emerge from the entirety of actions at the micro level and, in turn, 
influence these actions.”1 Ongoing use of a new software system can lead to 
shifts in capital accumulation; drive changes in social norms, policies, and laws; 
and alter our relationship with the natural world.

Consider Airbnb.com. Its immediate effects include resources consumed and 
jobs created during its development, energy consumed during its deployment, 
and the room renting and booking services it offers. Its enabling effects include 
changes in how its users make travel arrangements as alternatives to hotel 
bookings and in how property owners rent out space.

These enabling effects (the “sharing economy”) have been both praised and 
criticized for their far-reaching structural impacts. For example, Airbnb repre-
sents a substantial share of the buy-to-let market in major cities. The continuing 
price surges in these cities’ hot spots have been linked to the density of buy-to-
let properties. Many of these exist only because of the arbitrage that services 
such as Airbnb.com provide. The system enables transactions that provide a 
higher return on investment than long-term rentals. This has caused major con-
cerns in several large cities.

Reference
 1. L.M. Hilty and B. Aebischer, “ICT for Sustainability: An Emerging Research Field,” ICT Innova-

tions for Sustainability, Springer, 2015, pp. 3–36.
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company’s sustainable develop-
ment. For example, the system can 
support sustainability in the supply 
chain by making transparent the 
carbon footprint of purchases and 
facilitating the selection of provid-
ers who apply sustainable practices. 
This doesn’t change the overall 
project objectives, but it influences 
subsequent steps.

The scope of analysis starts with 
an inclusive, integrated view of the 
procurement processes, material 
flows into the company, and the lo-
cal community’s social and political 
environment. When defining possi-
ble system boundaries, the team ex-
periments with multiple perspectives 
and works jointly with the procure-
ment department and others.

The team expands the set of stake-
holders and draws on knowledge be-
yond the team by using a stakeholder 
impact analysis. This analysis con-
siders enabling and structural effects 
to identify those most affected by the 
project, including those external to 
the company. Stakeholders include 
local supplier representatives, service 
delivery organizations, process ana-
lysts, the chief technology officer, 
and the strategic-planning and fore-
sight group.

To keep the number of stakehold-
ers manageable, a sustainability ex-
pert acts as a surrogate stakeholder 
for others in the community and the 
further environment that the system 
might affect. A team member is as-
signed to each of the five sustain-
ability dimensions so that responsi-
bility for identifying possible effects 
is clear and effective communica-
tion with additional stakeholders 
can take place. These team mem-
bers consult relevant experts in areas 
such as supply chain sustainability, 
carbon accounting, and socially re-
sponsible procurement. They also 

consult anthropologists analyzing 
and interpreting current technologi-
cal developments and their impact 
on society.

The team agrees that the proj-
ect’s success criteria are not re-
stricted to whether it’s delivered on 

time and within budget, but will be 
measured and monitored over the 
36 months  after project comple-
tion. In this period, the team will 
measure a set of indicators covering 
the five sustainability dimensions. It 
will try to measure

SUSTAINABILITY 
PRINCIPLES FOR 
SOFTWARE ENGINEERING

The following principles are based on “Sustainability Design and Software: The 
Karlskrona Manifesto.”1

• Sustainability is systemic; a system can never be treated in isolation from 
its environment.

• Sustainability is multidimensional; the five key dimensions are economic, 
social, environmental, technical, and individual.

• Sustainability is interdisciplinary; sustainability design in software engineer-
ing requires an appreciation of concepts from other disciplines and must 
work across disciplines.

• Sustainability transcends the software’s purpose; any software can impact 
the sustainability of its socioeconomic, sociotechnical, cultural, and natural 
environments.

• Sustainability is multilevel; it requires us to consider at least two spheres 
during system design: the system under design and its sustainability, and 
the wider system of which it will be part.

• Sustainability is multi-opportunity; it requires us to seek interventions that 
have the most leverage on a system2 and to consider the opportunity costs.

• Sustainability involves multiple timescales; it requires long-term thinking to 
address the timescales on which sustainability effects occur.

• Sustainability isn’t zero-sum; changing a system’s design to consider the 
long-term effects doesn’t automatically imply making sacrifices now.

• System visibility is a necessary precondition and enabler for sustainability 
design. This is because only a transparent status of the system and its 
context, made visible at different abstraction levels and perspectives, can 
enable system designers to make informed responsible choices.

For more on this, see www.sustainabilitydesign.org.

References
 1. C. Becker et al., “Sustainability Design and Software: The Karlskrona Manifesto,” Proc. 37th 

IEEE Int’l Conf. Software Eng. (ICSE 15), 2015, pp. 467–476.

 2. D.H. Meadows, Leverage Points: Places to Intervene in a System, Sustainability Inst., 1999.
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• technical debt,
• social reputation and im-

proved relations with the local 
community,

• individual aspects such as pri-
vacy compliance and the satis-
faction of those involved in the 
procurement process,

• environmental aspects such as 
the total carbon footprint of the 
products and services acquired, 
and

• amortization of the project costs 
and improved cost–benefit rela-
tions in procurement.

During risk analysis, the team 
considers internal and external risks 
related to systemic effects in all five 
dimensions. For example, consider-
ing the evolving regulations on en-
vironmental accountability as a risk, 
the team develops a set of transpar-
ency requirements for the system. It 
also identifies uncertainties about 
future shifts in procurement as sus-
tainable products become more com-
petitive. So, it includes a feature to 
monitor these uncertainties.

During requirements elicitation, 
the team employs participatory tech-
niques. The inclusive perspective lets 
the project leverage contributions 
from a broader set of stakeholders, 
including local service providers. In 
a series of workshops, the team uses 
a sustainability reference goal model 
to derive specific sustainability goals 
for the project and align them with 
other system goals, while deriving 
extended usage scenarios with the 
local community representatives.

The resulting requirements speci-
fication is based on a template that 
includes checklists for sustainability 
criteria and standards compliance in 
all five dimensions. The document is 
circulated among all the stakehold-
ers and is shared with regulatory 

agencies to demonstrate that the 
project meets relevant sustainability 
rules. So, it’s also used more actively 
in subsequent stages.

Sustainability Debt
The system resulting from this pro-
curement project is different when 
development takes into account sus-
tainability principles and therefore 
long-term consequences.

Focusing on sustainability de-
sign, software engineers must adopt 
a mind-set quite different from the 
puzzle-solving attitude often found 
in engineering and business. Now, 
the objective is to identify and under-
stand “wicked problems”: problems 
that are deeply embedded in a com-
plex system with no definitive formu-
lation and no clear stopping rule. In 
such cases, every solution changes the 
nature of the problem, so little oppor-
tunity exists for trial-and-error learn-
ing.7,8 Instead, we need an adaptive, 
responsive, and iterative approach 
emphasizing shared understanding.

Figure 1 highlights selected im-
mediate, enabling, and structural ef-
fects of the procurement system in 
the five sustainability dimensions. 
Consider a system feature that tracks 
individual products’ carbon foot-
print, letting users choose products 
with lower footprints. The com-
pound structural effect in the eco-
nomic dimension can benefit local 
suppliers with environmentally sus-
tainable production and can lead to 
a reduced carbon footprint.

The diagram in Figure 1 sup-
ports interactive collaboration among 
stakeholders to discover, document, 
and validate the system’s potential ef-
fects. Not all effects will be positive. 
For example, automating product se-
lection rules to minimize the carbon 
footprint takes away the manager’s 
freedom to make decisions in the 

procurement process.9 This can re-
duce mutual trust between the orga-
nization’s members.

The diagram also facilitates a 
conversation about sustainability 
debt: decisions made for the present 
situation have invisible effects that 
accumulate over time in each of the 
five dimensions.10 When we increase 
energy consumption, reduce indi-
vidual privacy, impose technical bar-
riers, or incur additional financial 
costs, we incur debts in these dimen-
sions to different stakeholders. Mak-
ing these effects visible is the first 
step to understanding and consider-
ing them in system design decisions.

Requirements  
Are the Key
In those two projects, a series of 
decision points occurred during 
system design. Many of them were 
requirements-engineering activities 
that occurred repeatedly in all itera-
tions throughout the projects. Each 
decision influenced the decision 
space of subsequent choices and pro-
foundly affected the system and its 
effects. Table 1 highlights how key 
activities change when we consider 
sustainability design principles.

Requirements’ leverage becomes 
clear when we consider their rela-
tionships with engineering tech-
niques. We develop techniques to 
quantify, construct, and test arti-
facts and to control whether the 
results fall in an acceptable range. 
However, for design concerns such 
as usability, performance, maintain-
ability, or sustainability, such tech-
niques are only applied once a need 
has been identified. Without such a 
need, the engineering techniques will 
remain unused and hence have no ef-
fect on the project.

For example, techniques for  
increasing technical sustainability 
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abound, ranging from architec-
tural design patterns to documenta-
tion guidelines. Yet, because apply-
ing these techniques often involves 
an up-front investment of effort, it 
occurs only when a longer life ex-
pectancy of a system is recognized 

and expressed. On the other hand, 
a stated requirement for which no 
technique yet exists will lead to an 
identi� ed gap in technological abil-
ity. This means that in practice, 
systemic changes to the activities in 
Table 1 will dominate the effects of 

whatever techniques we develop to 
support these activities.

So, requirements engineers play 
a key role in sustainability. As “sus-
tainability engineers,” they go be-
yond a narrow system perspective 
and follow an interdisciplinary, 
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The procurement 
system’s life-cycle 
costs can be a burden.

Markets can reward 
environmentally 
sustainable 
production.

The local economy 
can be strengthened.

Transparency of 
procurement 
facilitates business
interaction with local
suppliers.

Community 
relationships 
can be improved.

Trust within 
the company 
could be 
diminished.

The individual choice of 
decision makers in the 
supply chain would decrease.

The carbon footprint 
can be reduced.

System quality: 
maintainability

System feature: 
show products’ 
carbon footprint 

Users can choose 
products with 
low carbon
footprints.

System evolution 
can increase 
technical debt.

The system makes 
the procurement 
process transparent 
to local suppliers.

The system could 
impose strict rules 
on product selection.

Procurement 
system

FIGURE 1. Selected immediate, enabling, and structural effects of the procurement system in the � ve sustainability dimensions. The 

diagram supports interactive collaboration among stakeholders to discover, document, and validate the system’s potential effects.
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systems-oriented, stakeholder- focused 
approach, supported by higher 
management and executives. Their 
task is to understand the nature of  
software-intensive systems and the 
impact those can have on their social, 

technical, economic, and natural en-
vironments and the individuals in 
those environments.

This responsibility is reflected 
in the new UK Standard for Profes-
sional Engineering Competence, 

which specifies that engineers are 
to “act in accordance with the prin-
ciples of sustainability, and prevent 
avoidable adverse impact on the en-
vironment and society.”11 It’s up to 
SE curricula developers to equip 

TA
B

L
E

 1 Table 1. Software engineering practices for sustainability.*

Task Standard current practice Focus of future practice

Mind-setting The world is a puzzle, and we should solve 
the problem.

The world is complex, and we should first understand the 
dilemmas.

Determination of the 
project objective and 
the system purpose, 
boundary, and scope

Focus on the immediate business need and 
key system features. Don’t question the 
project’s or system’s purpose.

Emphasize how the project can affect sustainability in all 
dimensions. Strive to advance sustainability in multiple 
dimensions simultaneously. Experiment with different system 
boundaries to understand the alternative impacts.

External constraint 
identification

See constraints as imposed by the direct 
environment of the system and its technical 
interfaces. Minimize the constraints 
considered, but include legal, safety, 
security, technical, and business resources.

See constraints in each dimension as opportunities. Look for 
constraints from additional sources, starting with company 
corporate-social-responsibility policies, legislation, and 
sustainability standards.

Stakeholder 
identification

Minimize the number of stakeholders 
involved, and focus on those who have 
influence. Focus on internal stakeholders, 
and exclude unreachable stakeholders.

Maximize stakeholder involvement in an inclusive perspective 
integrating external stakeholders, and involve those who 
are affected. Assign a dedicated role to be responsible for 
sustainability, and introduce surrogate stakeholders to represent 
outside interests.

Success criteria 
definition

Focus on the financial bottom line at project 
completion. Measure the business outcome 
and financial return on investment.

Focus on advancing multiple dimensions simultaneously, 
including financial aspects, and take into account that most 
effects occur after project completion.

Requirements 
elicitation

Focus on the features and immediate effects 
the stakeholders want.

Help the stakeholders understand the system’s enabling effects. 
Use creativity techniques and long-term scenarios to forecast 
the potential structural impact.

Risk identification Identify risks that threaten timely project 
completion within the budget.

Include the effects on the system’s wider environment. Include 
enabling and structural effects and risks that can develop over 
time.

Tradeoff analysis View tradeoff analysis as a prioritization 
and selection problem, and let the key 
stakeholders decide.

Strive to transform sustainability tradeoffs into mutually 
beneficial situations. Ensure that a wider range of stakeholders 
(or their surrogates) discuss sustainability tradeoffs.

Go/no-go decision Base the decision on feasibility, financial 
costs and benefits, and risk exposure 
to project participants—that is, internal 
stakeholders.

This continues to be an internal business decision but is 
documented to show to external audiences that it took into 
account sustainability indicators and enabling effects. The 
decision is based on a consideration of positive and negative 
effects in all five dimensions.

Requirements 
validation

Let key stakeholders verify that their 
interests are captured.

Ensure broad community involvement focused on understanding 
effects.

Project completion Verify whether success criteria are met on 
the completion date. After that, focus on 
maintenance and evolution.

Evaluate the effects in all five dimensions over a certain time 
frame after completion, aligned with the expected timescale of 
effects.

Requirements 
documentation

Current templates ignore long-term effects 
and sustainability considerations.

Templates require information about sustainability as a design 
concern and support analysts with checklists.

* For a description of the dimensions mentioned in the table, see the section “Sustainability in Software Engineering.”
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future software engineers with the 
competences required to simultane-
ously advance goals in all five di-
mensions, beyond the technical and 
economic.

For a long time, concerns about 
such effects have taken a backseat in 
SE, but this is changing as standards 
are being adjusted. For example, the 
working group WG42 on ISO/IEC 
42030 (Architecture Evaluation) is 
discussing energy efficiency and en-
vironmental concerns at the soft-
ware architecture level. In addition, 
the IEEE P1680.1 Standard for En-
vironmental Assessment of Personal 
Computer Products is being revised.

Although these steps are impor-
tant, a full consideration of all five 
sustainability dimensions is needed 
on the level of quality models, system 
documentation templates, and the 
analysis of systemic effects throughout 
system life-cycle stages. Requirements 
engineers will often be responsible for 
introducing relevant standards in each 
of the five dimensions into the elicita-
tion and specification process. To sup-
port this, revisions of the ISO 25000 
series should incorporate sustainabil-
ity considerations related to software 
systems’ quality attributes. In addi-
tion, ISO 29148 should acknowledge 
the importance of system character-
istics beyond interaction with human 
users and encourage consideration of 
the systemic effects of software sys-
tems in RE.

S oftware’s critical role in so-
ciety demands a paradigm 
shift in the SE mind-set. 

Sustainability design emphasizes 
an appreciation of wicked problems 
over a focus on puzzles and pieces, 
systems thinking over computational 
problem solving, and an integrated 
understanding of systems over a 

divide-and-conquer approach to sys-
tems analysis.

Although these challenging shifts 
won’t come easy, taking such per-
spectives provides an opportunity 
to stand out, an invitation to inno-
vate, and an occasion for software 
engineers and companies to distin-
guish themselves with a unique sell-

ing point in a competitive market. 
We also have the opportunity to help 
shape broader sustainability policy. A 
shift to a sustainable society requires 
large-scale change both in govern-
ment policy and in engineering and 
business practice; neither on its own 
will suffice. But regulatory change is 
much easier if it builds on established 
best practices, so software practitio-
ners must take the lead.

If you agree that we, as software 
engineers, have a responsibility for 
the long-term impact of the systems 
we design, the sustainability design 
principles provide an opportunity to 
get started. We can and should start 
now, and practitioners can lead the 
way. We need to collect experiences 
in applying sustainability principles 
in SE and learn from the process. An 
important way to make this vision of 
software as a force for sustainability 
a reality is by cooperation between 
industry and academia.

Successful collaborations to inte-
grate sustainability concerns into es-
tablished practices can significantly 
and positively influence the long-term 
effects of the systems we design. To fa-
cilitate this, we must do three things.

First, we must identify and tackle 
causes of unsustainable software 
design. For this, industry can invite 
academics to research, analyze, and 
reengineer their current development 
processes and practices for improved 
sustainability.

Second, we must develop exem-
plar case studies that demonstrate 

the benefits of sustainability design 
in SE. For this, early adopter indus-
trial collaborators can partner with 
academics to apply research findings 
such as those summarized in Table 1 
and report on longer-term results.

Finally, we must build compe-
tences in the theory and practice of 
sustainable design into the training 
of all software engineers. Industry 
can make the demand for software 
practitioners trained in sustainabil-
ity principles explicit by requiring 
specific competences from potential 
employees. Researchers and educa-
tors should develop improved cur-
ricula that incorporate sustainabil-
ity principles and ensure that future 
software professionals possess the 
competences needed to advance sus-
tainability goals through SE.

Let’s get started.
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