
Sustainability Design and Software:
The Karlskrona Manifesto

Christoph Becker
Faculty of Information
University of Toronto
Toronto, ON, Canada

christoph.becker@utoronto.ca

Birgit Penzenstadler
Institute for Software Research
University of California, Irvine

Irvine, California, US
bpenzens@uci.edu

Ruzanna Chitchyan
Dept of Computer Science

University of Leicester
Leicester, UK

rc256@leicester.ac.uk

Norbert Seyff
Dept of Informatics
University of Zurich
Zurich, Switzerland

seyff@ifi.uzh.ch

Leticia Duboc
Dept of Inf. & Computer Science

State Univ. of Rio de Janeiro
Rio de Janeiro, Brazil

leticia@ime.uerj.br

Colin C. Venters
School of Computing & Engineering

University of Huddersfield
Huddersfield, UK

c.venters@hud.ac.uk

Steve Easterbrook
Dept of Computer Science

University of Toronto
Toronto, ON, Canada
sme@cs.utoronto.ca

Abstract—Sustainability has emerged as a broad concern for
society. Many engineering disciplines have been grappling with
challenges in how we sustain technical, social and ecological
systems. In the software engineering community, for example,
maintainability has been a concern for a long time. But too
often, these issues are treated in isolation from one another.
Misperceptions among practitioners and research communities
persist, rooted in a lack of coherent understanding of sustain-
ability, and how it relates to software systems research and
practice. This article presents a cross-disciplinary initiative to
create a common ground and a point of reference for the
global community of research and practice in software and
sustainability, to be used for effectively communicating key
issues, goals, values and principles of sustainability design for
software-intensive systems. The centrepiece of this effort is the
Karlskrona Manifesto for Sustainability Design, a vehicle for
a much needed conversation about sustainability within and
beyond the software community, and an articulation of the
fundamental principles underpinning design choices that affect
sustainability. We describe the motivation for developing this
manifesto, including some considerations of the genre of the
manifesto as well as the dynamics of its creation. We illustrate the
collaborative reflective writing process and present the current
edition of the manifesto itself. We assess immediate implications
and applications of the articulated principles, compare these to
current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chal-
lenges that require long-term, joined-up thinking. How do we
sustain our technical infrastructures, given how much we rely
on them for everything from communication and navigation
through to storing health records, identifying security threats,
and keeping the lights on? How do we sustain prosperity in
society, given the erosion of trust in our political institutions
and a growing inequality in ownership of resources? And,
above all, how do we sustain the planetary systems that support
life on earth, in the face of accumulation of pollutants, species
loss, and accelerating climate change?

The discipline of Software Engineering (SE) has a major
role to play in sustainability, because of the extent to which
software systems mediate so many aspects of our lives. How-
ever, software practice has a tendency to focus only on the
immediate effects and tangible benefits of software products
and platforms. SE research has, for the most part, focused on
increasing the reliability, efficiency and cost-benefit relation
of software products for their owners, through a focus on
processes, methods, models and techniques to create, verify
and validate software systems and keep them operational.

The lack of long-term thinking in software engineering
research and practice has been critiqued throughout the history
of the discipline. For example, software maintenance and
evolution were raised as concerns even at the very first
software engineering conference [1]. Since then, efforts to
increase the maintainability of software products and facilitate
their evolution have often focused on improving architecture,
decreasing lifecycle costs and managing technical debt [2].
Neumann has criticized the lack of long-term thinking over
security considerations in SE [3]. For our digital information
assets, some now speak of a ‘digital dark age’ [4], where,
having discarded analog media in preference for digital, we
now find that many of these assets become unreadable, due,
in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintain-
ability of software per se, considerations that extend beyond
immediate software product qualities and user benefits are
generally treated as secondary concerns, optional qualities to
be addressed only after the system under design has been
shown to be a success in terms of technical and/or marketing
criteria. The larger impact of software artefacts on society
and the natural environment is not routinely analyzed. But
by trading off longer-term sustainability questions for shorter-
term success criteria, we accumulate threats to sustainability.
We argue that this trade-off itself is unnecessary. As Neumann

points out, “there is much to be gained from farsighted
thinking that also enables short-term achievements.” [3].

The benefits of longer-term thinking in software design are
broad and far-reaching. In almost any domain, software is a
key driver of continued automation and dematerialization [5].
Increasingly, our consumption of resources and access to
information are shaped by the design choices embedded in
our software systems, rather than the conscious choices we
make as individuals. Hence, the design of software systems
comes with a special set of responsibilities to society that are
much broader than those described in existing codes of ethics
for computing professionals. While increasing attention on the
broader effects of software on society has helped develop our
understanding of these issues, a common perspective on how to
incorporate sustainability thinking into the design of software
systems is missing.

This article describes a cross-disciplinary initiative to create
a common ground and develop a focal point of reference for
the global community of research and practice in software and
sustainability. The process was initiated at a working session
at the Third Int. Workshop on RE for Sustainable Systems
(RE4SuSy), held at RE’14, Karlskrona, Sweden. The session
was was included in the program to take up a proposal in one
of the workshop contributions which suggested that “[a]n open
manifesto for forward-thinking sustainable software design,
drafted collaboratively in an open and sustainable process,
could set a milestone and provide the necessary focal point for
joint future efforts” [6]. The central result of our work is the
Karlskrona manifesto [7], a document to be used for effectively
communicating key issues, goals, values and principles of
sustainability design.

The next section provides a basis for the discussion by
reviewing the history of ideas in the area of sustainability in
software. Section III traces the history of the manifesto as
a genre and draws observations from a study of manifestos.
It summarizes the lessons learned and the principles guiding
the collaborative writing process that we have initiated. The
current version of the manifesto is reproduced in Section IV.
Section V discusses the implications of these principles on SE
research and practice, and some remaining open questions.

II. SOFTWARE SYSTEMS AND SUSTAINABILITY

The concept of sustainability is used by many different com-
munities, often in ambiguous ways. Its Latin origin sustinere
was used as both endure and as uphold, furnish [something]
with means of support.1 In modern English, sustainability
refers to the ‘capacity’ of a system ‘to endure’ [8]. But these
definitions merely raise further questions [9]. Tainter points
out we need to ask: (i) Sustain what? (ii) For whom? (iii) How
long? (iv) At what cost? [10]

In Software Engineering, implicit discussions about sustain-
ability can be traced back as early as 1968, when software
maintenance and evolution were brought up at the NATO
SE conference [1]. Lehman proposed his laws of software

1http://en.wiktionary.org/wiki/sustineo#Latin

evolution shortly thereafter [11], [12], pointing out that most
real-world software is embedded in a social context, and that
changes in the software and the world affect each other. His
first law of software evolution encapsulated this: “Any program
that ... reflects some external reality undergoes continual
change or becomes progressively less useful” [11]. Over the
following decades, the software evolution community made
significant advances in the areas of software maintenance,
program understanding, reverse engineering, reengineering,
mining software repositories, software migration, and software
process improvement. Each of these areas has provided in-
sights on how to improve SE practice and how to improve the
quality of the systems we build [13].

Despite these advances in understanding software maintain-
ability as a technical concern, in practice it is interdependent
with its organizational and business context. Thus, technical
sustainability of a software system cannot be separated from
social and financial sustainability of the organization that cre-
ated it, a challenge already acknowledged at the first Software
Maintenance Workshop in 1983 [14]. Durdik et. al. point out
that “in many software development projects, sustainability
is treated as an afterthought, as developers are driven by
time-to-market pressure and are often not educated to apply
sustainability-improving techniques” [15], and they call for
better guidance for software practice.

This concern for software sustainability parallels a much
broader concern about sustainability in human society. Here
sustainability is often defined using some variant of “the
ability of the current generation to meet its needs without
compromising the needs of future generations” [16]. While it
can be hard to say what would constitute sustainability at the
societal level, it is often easier to recognize which systems are
not sustainable. Any system that consistently consumes more
value (e.g., money, energy, effort) than it produces cannot be
sustained indefinitely if its environment, from which resources
are drawn, is finite. By all accounts, human society has been
in such a state since the 1970s, consistently consuming more
ecological resources than the planet can produce [17].

In developing a manifesto, the question of how we define
sustainability has proved challenging. Our intent has been
to develop a broad set of principles that would motivate
deeper thinking on sustainability and software, while avoiding
terminological disputes. In this, we have struggled to find a
balance between abstraction and precision. We collected a
number of definitions of sustainability from the literature (see
Table I) and conducted a straw poll of workshop participants.
The results favoured fundamental definitions such as ‘the
capacity to endure’ [8], [18], but emphasized the importance
of more specific expressions and showed considerable support
for most of the entries in Table I.

Our approach has therefore been to select as simple a defi-
nition as possible (‘the capacity to endure’), and focus instead
on a conceptual framework for thinking about sustainability
and a set of dimensions by which to approach it. Even this
approach has proved difficult. Early feedback on drafts of the
manifesto questioned whether it is even appropriate to discuss

Table I
SUSTAINABILITY-RELATED DEFINITIONS

Source Definition
Common ([18],[8]) sustainability: the ‘capacity to endure’
Carlowitz, H. C. [19] ‘Nachhaltigkeit’ (Sustainability) as sustained-yield forestry
The Oxford Dictio-
nary of English [8]

to sustain: ‘To keep in being; to continue in a certain state; to keep or maintain at the proper level or standard; to preserve the
status of. ‘To support life in; to provide for the life or bodily needs of; to furnish with the necessities of life; to keep’

UN WC on Envir. &
Development [16]

Sustainable development as a development that ‘meets the needs of the present generation without compromising the ability of
future generations to meet their own needs’

The Natural Step [20] In a sustainable society, nature is not subject to systematically increasing: 1. concentrations of substances extracted from the earth’s
crust. 2. concentrations of substances produced by society. 3. degradation by physical means. And, in that society: 4. people are
not subject to conditions that systematically undermine their capacity to meet their needs.

Rees W. and Wacker-
nagel M. [17]

Ecological footprint as the amount of land and water area a human population would hypothetically need to provide the resources
required to support itself and to absorb its wastes, given prevailing technology

Heinberg R. [21] Five axioms to define sustainability: 1) Any society that continues to use critical resources unsustainably will collapse. 2) Population
growth and/or growth in rates of consumption of resources cannot be sustained. 3) The use of renewable resources must proceed
at a rate that is less than or equal to the rate of natural replenishment. 4) The use of nonrenewable resources must proceed at a
rate that is declining, and the rate of decline must be greater than or equal to the rate of depletion. 5) Substances introduced into
the environment from human activities must be minimized and rendered harmless to biosphere functions. Where pollution from
extraction and consumption of nonrenewable resources has proceeded at expanding rates for some time and threatens the viability
of ecosystems, reduction in the rates of extraction and consumption of those resources may need to occur at a rate greater than
the rate of depletion.

Tainter J. [10] ‘1) Sustainability is an active condition of problem solving, not a passive consequence of consuming less. 2) Complexity is a
primary problem-solving tool, including problems of sustainability. 3) Complexity in problem solving is an economic function, and
can reach diminishing returns and become ineffective. 4) Complexity in problem solving does its damage subtly, unpredictably,
and cumulatively over the long term. Sustainability must therefore be a historical science. 5) Sustainability may require greater
consumption of resources rather than less. One must be able to afford sustainability. 6) The members of an institution may resort
to resiliency as a strategy of continuity only when the option of sustainability is foreclosed. 7) A society or other institution can be
destroyed by the cost of sustaining itself. To define sustainability in a specific context, the questions should be (i) Sustain what?
(ii) For whom? (iii) How long? (iv) At what cost?’

Dillard J., Dujon V.
and King M. [22]

Sustainability is often thought of as composed of three overlapping, mutually dependent goals: a) to live in a way that is
environmentally sustainable, or viable over the very long-term, b) to live in a way that is economically sustainable, maintaining
living standards over the long-term, and c) to live in a way that is socially sustainable, now and in the future. The social dimension
of sustainability should be understood as both 1) the processes that generate social health and well-being now and in the future,
and 2) those social institutions that facilitate environmental and economic sustainability now and for the future.

Polese M. and Stren
R. [23]

Social sustainability as ‘policies and institutions that have the overall effect of integrating diverse groups and cultural practices in
a just and equitable fashion.’

Harris J. M. and
Goodwin N. R. [24]

‘A socially sustainable system must achieve fairness in distribution and opportunity, adequate provision of social services, including
health and education, gender equity, and political accountability and participation.’

Hilty L. M. et al. [25] For evaluating sustainability of ICT systems, three orders of effect need to be considered. ‘First-order’ or ‘primary’ effects: effects
of the physical existence of ICT (environmental impacts of the production, use, recycling and disposal of ICT hardware). ‘Second
order’ or ‘secondary’ effects: indirect environmental effects of ICT due to its power to change processes (such as production or
transport processes), resulting in a modification (decrease or increase) of their environmental impacts. ‘Third order’ or ‘tertiary’
effects: environmental effects of the medium- or long-term adaptation of behaviour (e.g., consumption patterns) or economic
structures due to the stable availability of ICT and the services it provides.

Mahaux M. (unpub-
lished)

‘For me, what matters is naively to make the world a better place, for this and all coming generations, and for all populations. That
means keeping an environment in which it is great to live in and that can provide the resources to live well. That means people
who live in harmony with each other, with their environment, who are free to think and able to do what will make them happy.
Beyond fulfilling their basic needs, it’s about realizing the human potential on earth.’

sustainability in terms of a set of dimensions. Discussion of
this feedback revealed some sharply different interpretations
of sustainability.

The core issue can be illustrated in terms of a preference
over one or other of the diagrams shown in Figure 1. Fig. 1(a)
shows a common visualization of sustainability in terms of
three separate concerns. The key idea is that human society is
only sustainable if it can be sustained in all three dimensions:
social, economic and environmental. This view is incorporated
into the triple bottom line approach, where companies account
not just for financial returns, but also for benefits and impacts
in the social and environmental spheres [27].

This approach is rejected as weak sustainability by those
who argue that it’s an error to seek to balance the three
concerns. According to this view, Figure 1(a) is misleading,
as the economy is really only a subsystem of society, which

in turn is a subsystem of the environment (Figure 1(b)). To
achieve strong sustainability, we have to acknowledge that
there are fundamental biophysical limits that constrain the
flows of natural resources on planet earth, and no arrangement
of society can be considered sustainable unless it lives within
these limits [28]. In this view, it is wrong to talk about
sustainability in terms of a set of ‘dimensions’, as the concerns
are strictly hierarchical.

The conflict between these two views plays out differently in
different disciplines. In economics, it rests on the question of
substitutability. Many economists assume that natural capital
(the stock of natural resources) are infinitely substitutable
with human capital (e.g., human ingenuity). If they are, then
economic growth need not be constrained by biophysical
limits. However, ecological economists dispute this, and argue
that there are firm limits to substitutability, which implies

Environmentally-
Sustainable-

UseofNatural$Resources$
Absorp2onofWastes$

(air,$water,$land,$climate,$…)$

Economically-
Sustainable-
Financial$prosperity$
Investment$&$Profit$

(jobs,$income,$$
capital,$taxes,$…)$$

Socially--
Sustainable$
StandardofLiving$
Equity$&$Trust$

(community,$educa2on,$$
opportunity,$$
mobility,$…)$$

Social3Environmental-
Environmental$Jus2ce;$
Equitable$access$to$$

resources.$

Environmental3Economic-
Energy$Efficiency;$

Subsidies$&$incen2ves;$
Carbon$Pricing.$

Social3Economic-
Business$Ethics;$

Social$Responsibility;$
Workplace$democracy;$

-
Fully-

Sustain3-
able-

(a) Weak Sustainability (adapted from [18])

!
!

Economy'

Environment'

Society!

(b) Strong Sustainability

Socio%&
Centric&
Concerns!

Techno%&
Centric&
Concerns!

Eco%&
Centric&
Concerns!

Socio%&
Centric&
Concerns!

Techno%&
Centric&
Concerns!

Eco%&
Centric&
Concerns!

Integrated&
thinking&about&
sustainability&

(c) A more pragmatic view for software
research (adapted from [26])

Figure 1. Competing Visualizations of Sustainability.

there are limits on economic growth [29]. For social issues,
the dispute centres on whether all aspects of social sustain-
ability eventually lead to questions of distributional justice
over access to (natural) resources, or whether there are other
aspects of social sustainability (e.g., human rights) that arise
independently from the question of how we allocate resources.

While we believe these questions are important, we do
not believe they offer a useful starting point for software
practitioners and researchers struggling with the question of
what sustainability means for them. A more pragmatic view
is shown in Figure 1(c), where sustainability is depicted as
a learning process by which we move towards integrated
thinking. Software practitioners tend to treat techno-centric
concerns (e.g., software qualities and the economic value they
create) separately from socio-centric concerns (how software
can make people’s lives better) and eco-centric concerns
(protecting the environment). Rather than asking whether it
is appropriate to balance these concerns, we should instead
be asking What methods and tools are needed to explore
inter-dependencies between these concerns, and to foster more
integrated and long-term thinking?

In the past few decades, production and use of information
technologies (IT) have had a dramatic effect on society, giving
us new tools and new capabilities, but also generating a
massive growth in demand for energy and other resources.
Software systems, in particular, play a transformative role, as
they enable dematerialization [30], drive consumption patterns
for products, services, materials, and energy, and facilitate
structural changes from consuming material goods towards
consuming immaterial services, such as the shift to listening to
music online instead of purchasing (and discarding) physical
records and CDs. They also collect, manage and distribute
information needed to understand long-running complex phe-
nomena ranging from climate data to personal health records,

and statistics on global equity and capital. As such, the
software industry increasingly represents a central driver for
innovation and economic prosperity, but simultaneously in-
creases social inequity, as people without access and technical
skills are left behind [31], and causes environmental damage,
as consumption of technology grows [32].

The approach we have adopted is to focus on how we
understand and take responsibility for the multiple interacting
opportunities and impacts of software technology, including
first, second and third order effects [33]. First order effects are
impacts and opportunities created by the immediate existence
of a software system, arising from its design features and
flaws. Second order effects are those created by the ongoing
use and application of the software, such as how it changes
what we do and what we’re capable of. Third order effects are
the changes that occur through the aggregated behaviours of
very large numbers of people using the technology over the
medium to long term (e.g., energy demand, mass surveillance,
etc). These effects play out across many domains.

Following Goodland [34] and Penzenstadler & Fem-
mer [35], we identify five sustainability dimensions:

• Environmental: concerned with the long term effects
of human activities on natural systems. This dimension
includes ecosystems, raw resources, climate change, food
production, water, pollution, waste, etc.

• Social: concerned with societal communities (groups of
people, organizations) and the factors that erode trust in
society. This dimension includes social equity, justice,
employment, democracy, etc.

• Economic: focused on assets, capital and added value.
This includes wealth creation, prosperity, profitability,
capital investment, income, etc.

• Technical: refers to longevity of information, systems,
and infrastructure and their adequate evolution with

changing surrounding conditions. It includes mainte-
nance, innovation, obsolescence, data integrity, etc.

• Individual: refers to the well-being of humans as indi-
viduals. This includes mental and physical well-being,
education, self-respect, skills, mobility, etc.

These dimensions are interdependent. Cumulative effects
from the individual dimension will bleed into the social one;
effects from the environmental dimension into the individual,
social, and economic, and so on. Yet, these dimensions provide
a useful tool for dis-aggregating and analyzing relevant issues.

An understanding of these short and long term effects of
software technology and how they play out over multiple
dimensions can then lead to a consideration of leverage
points [36]: where are the most effective places to intervene
to achieve sustainability? Such interventions might be changes
in the way we analyze and design software systems, or they
might be changes in how we seek to apply software solutions
to societal problems.

A growing concern among software researchers about these
impacts, and a desire to find good leverage points, has inspired
a number of workshops at software-related conferences dedi-
cated to software and sustainability. For example, at ICSE‘09,
a special conference session explored the relationship between
Software Engineering and climate change, which led to a
series of workshops on software research and climate change
(WSRCC), at Oopsla/Onward! in 2009, at ICSE in 2010, and
at ECOOP in 2011. These led to a special issue of IEEE
Software [37]. As interest grew and broadened, the community
was brought together under the umbrella of the GREENS
(Green & Sustainable Software) workshop series at ICSE
through a workshop merger, held in 2012, 2013, and 2014, and
another series of workshops on RE for Sustainable Systems
(RE4SuSy) at REFSQ in 2012 and at the RE Conference in
2013 and 2014.

Other research communities have followed a similar
path [5]. The HCI community has held an annual series of
workshops on HCI and sustainability at CHI since 2009.
The AI community runs a series of workshops on ‘Compu-
tational Sustainability’ which began with separate workshops
at Cornell in 2009 and MIT in 2010, and a conference track
at AAAI since 2011. The scientific computation community
ran workshops on ‘Sustainable Software for Science: Practice
and Experiences (WSSSPE)’ at SC’13 and SC’14, focusing
more specifically on issues of technical sustainability. Finally,
a new annual conference series on ICT for Sustainability
was launched in 2013. At the same time, other communities
with a long-term view on socio-technical systems, such as
digital curation and preservation, have attempted to identify
what sustainability concerns in software technology mean for
them [6].

These communities share a sense that the design of software
is critically important for sustainability. We take the view that
all design has an impact on sustainability and all software has
an impact on the world. Therefore, it is the responsibility of
those who are involved in the creation of software to consider
this impact carefully.

The various efforts described above tackle a wide range
of different research questions, often with very little overlap.
They are developing conceptual frameworks, techniques, and
systems to understand different aspects of the problem [5].
Some seek to encourage reductions in consumption of energy
and material goods, or to support changes in purchasing
behavior. Others seek to use software capabilities to build
smarter (lower impact) infrastructure. However, there is a lack
of common understanding of the fundamental concepts of
sustainability and how they apply, and a need for a common
ground and consistent terminology. As such, persistent misper-
ceptions occur, as researchers and practitioners disagree over
whether we’re even asking the right questions (see, for exam-
ple, Strenger’s essay on ‘Designing for Resource Man’ [38]).
We lack a coherent framework with sound theoretical basis
that can provide a well-understood trans-disciplinary basis for
sustainability design [6], [9].

III. TOWARDS A MANIFESTO

Historically, a common vehicle for catalyzing communities
and providing such a focus in comparable situations has been
the genre of the manifesto. Communities have relied upon
it to articulate their viewpoint, often to oppose a prevailing
paradigm. Some manifestos very effectively captured key
messages with an appeal beyond the originating community
and hence provided a platform for subsequent thoughts and
initiatives to develop. Examples in the software world include
the GNU Manifesto2 and the Agile Manifesto3. However, these
have little in common in terms of their structure and content,
and the manifesto is a delicate genre. What makes a manifesto
a successful ‘point of reference’?

As a preparation for RE4SuSy, the first author conducted an
informal study to reflect on the nature and history of this genre,
based on a review of about two dozen manifestos in the areas
of SE, computer science and broader fields of product design,
and secondary sources discussing the genre and its practical
aspects. The purpose of this study was to understand the nature
of the writing process and the possible implications of its
product; enable a conscious choice as to whether the creation
of a manifesto is a desirable mechanism with a positive impact;
identify key elements to address and possible pitfalls to avoid;
and derive a set of principles to guide the process.

The origin of the manifesto as a distinct genre can be traced
to documents such as Luther’s theses and the Communist
manifesto. A fascinating account of the early history of
manifestos in politics and art is offered by Puchner [39] who
traces the distinct nature, rhetorics and effects of manifestos
across the evolution of the genre up to the art and politics
manifestos of the 20th century. Fundamentally, the manifesto
is a speech act [39]. While originally, it manifested the will of
an authority, Luther and Marx morphed this act into one that
assumes such authority. As such, the act becomes inherently
one in future perfect tense [39]. A successful manifesto will
have been effective in capturing a more commonly understood

2https://www.gnu.org/gnu/manifesto.html
3http://agilemanifesto.org/

message and articulating it clearly enough to enable others to
self-identify with the message. Here, the distinction between
declaring ‘manifesto’ in a title line and the rhetorical nature
of the manifesto becomes visible. However, we also need
to distinguish between the intentionally polarizing nature of
earlier manifestos in politics, art, and design, and recent
interpretations of manifestos which implicitly assume a much
more conversational standpoint, aiming to initiate broader
reconsideration rather than aiming to create a revolution.

What is a successful manifesto? An ideal manifesto can
provide a focal point of reference and catalyze communities
by phrasing key questions in accessible language appealing to
a broad audience. It enables others to see connections and
synergies and self-identify with the concerns articulated in
the manifesto. It contributes to unifying the language about
a subject and facilitates visible community building. It also
facilitates the action of reaching out to related communities
with a clear value proposition and provides arguments for the
relevance of the topic, especially encouraging new community
members to engage. As such, it can enable a clear communi-
cation of the benefits of engaging in the subject.

However, the manifesto has also been called a ‘defunct
format’ that ‘belongs to the early twentieth century’ [40].
It arises from the nature of the genre that the creation of a
manifesto brings with it the potential for pitfalls and negative
consequences. The compact, shortened form of communi-
cation often assumed in a manifesto can appear dogmatic,
and catchy language designed to be broadly appealing can
ultimately hide the real complexity of underlying issues. A
polarizing perspective can result in splinter groups rather
than a unification, and the questioning of commonly accepted
assumptions might alieniate rather than unite the audience.
Hence, an intended focal point of reference can make others
feel excluded rather than invited.

The acknowledgment of these risks was discussed in the
early stages when initiating the collaborative process and has
led us to articulate a set of principles, meant to guard the
emerging group from the above mistakes, avoid groupthink,
and foster a sustainable process. These have guided our work:

Principles, not techniques. The manifesto should focus
on principles and values of sustainability, not on current
techniques, specific models, and suggested approaches.

Scope. The intended scope is broad and inclusive, but
clearly delimited. This is inherently difficult to define and
achieve, but the principle has repeatedly been brought in
when shaping the manifesto to provide a balance and a focus
consistent with what the authors are confident to adddress.

Emerging structure. We believe that the content and the
structure of the manifesto needed to emerge from a com-
mon set of elements arising from the discussion, initially
at the RE4SuSy workshop. This has prompted the process
to be very bottom-up and the structure strongly grounded
in what emerged from the contributions of the initial group
of workshop participants. Facilitation within and beyond the
workshop was strongly focused on providing a stable structure,
documenting outcomes, and facilitating the discussion.

Participation and transparency. The discussion was initi-
ated within the workshop, and all participants of the workshop
were invited to the subsequent process. No conditions are
set for entering the discussion process. The initial document
was released publicly for comments4 and presented at the
RE closing session, and direct discussions with a number
of experts in the fields of sustainability have been initiated.
Broader engagement with the community includes a discussion
panel held at the SPLC’14 conference5, a workshop at the
iConference 20156, a discussion at WSSSPE27, and a special
discussion session planned for RE4SuSy’2015.

Conversation over consensus. This acknowledges that
while internal consensus is critical, universal consensus is
an elusive, and perhaps undesirable, goal. The intention for
external engagement is to initiate a dialogue rather than aim
for full consensus within an extremely broad community.

Minimal and adaptive process. In line with the focus on
emergent content and structure, we designed only a minimal
process and created the required support structure only as
necessary. This eventually included an email list, regular
Google hangouts, and a shared folder.

Synchronous collaboration. The elements of the manifesto,
at all times, were written and edited in fully synchronous
collaboration, first in person during the RE conference, then
virtually on Google Drive8.

Iterative evolution. A vision was formulated early on, but
no specific milestones or objectives were set and the process
was intended to be incremental, iterative, and open-ended.

As preparation for the workshop discussions, we elicited
initial responses, gathered a sense of the common ground
through a vote on sustainability definitions, and collected
initial thoughts and principles of sustainability for a possible
manifesto.

At the workshop, all participants supported the collaborative
writing of a manifesto and worked through a number of
brainstorming sessions to collect starting points for central
statements in the categories context, purpose, scope, princi-
ples and values, best practices, and prescriptions. After the
workshop, the core set of interested collaborators continued
to work on the manifesto throughout the conference via a
number of intense face-to-face writing sessions, each between
two and five hours. As a result, by the end of the third day
of the conference, an initial version of the manifesto was
released publicly and presented at the Workshop Highlights
Session of RE’14. A combination of weekly synchronous
collaborative writing sessions and individual contributions and
email discussions continued over several months.

IV. THE KARLSKRONA MANIFESTO

The latest release of the manifesto is included here. It is
becoming a living document at http://sustainabilitydesign.org.

4http://bit.ly/RE14Manifesto
5http://www.splc2014.net/panels.html
6http://ischools.org/the-iconference/
7http://wssspe.researchcomputing.org.uk/wssspe2
8This paper was developed in similar fashion on overleaf.com.

THE KARLSKRONA MANIFESTO
FOR SUSTAINABILITY DESIGN

Version 0.5, January 2015

Introduction
As software practitioners and researchers, we are part of the group of people
who design the software systems that run our world. Our work has made
us increasingly aware of the impact of these systems and the responsibility
that comes with our role, at a time when information and communication
technologies are shaping the future. We struggle to reconcile our concern for
planet Earth and society with the work that we do. Through this work we have
come to understand that we need to redefine the narrative on sustainability
and the role it plays in our profession. What is sustainability, really? We often
define it too narrowly. Sustainability is at its heart a systemic concept and
has to be understood on a set of dimensions, including social, environmental,
economic, individual, and technical. Sustainability is fundamental to our
society. The current state of our world is unsustainable in more ways that
we often recognize. Technology is part of the dilemma and part of possible
responses. We often talk about the immediate impact of technology, but rarely
acknowledge its indirect and systemic effects. These effects play out across all
dimensions of sustainability over the short, medium and long term. Software
in particular plays a central role in sustainability. It can push us towards
growing consumption of resources, growing inequality in society, and lack of
individual self-worth. But it can also create communities and enable thriving
of individual freedom, democratic processes, and resource conservation.
As designers of software technology, we are responsible for the long-term
consequences of our designs. Design is the process of understanding the
world and articulating an alternative conception on how it should be shaped,
according to the designer’s intentions. Through design, we cause change and
shape our environment. If we don’t take sustainability into account when
designing, no matter in which domain and for what purpose, we miss the
opportunity to cause positive change.

We recognize that
there is a rapidly increasing awareness of the fundamental need and desire for
a more sustainable world, and there is a lot of genuine desire and goodwill -
but this alone can be ineffective unless we come to understand that. . .

There is a narrow perception of sustainability that frames it as protecting
the environment or being able to maintain a business activity. Whereas as a
systemic property, sustainability does not apply simply to the system we are
designing, but most importantly to the environmental, economic, individual,
technical and social contexts of that system, and the relationships between
them.
There is a perception that sustainability is a distinct discipline of research and
practice with a few defined connections to software. Whereas sustainability
is a pervasive concern that translates into discipline-specific questions in each
area it applies.
There is a perception that sustainability is a problem that can be solved, and
that our aim is to find the ‘one thing’ that will save the world. Whereas it is
a ‘wicked problem’ - a dilemma to respond to intelligently and learn in the
process of doing so; a challenge to be addressed, not a problem to be solved.
There is a perception that there is a tradeoff to be made between present
needs and future needs, reinforced by a common definition of sustainable
development, and hence that sustainability requires sacrifices in the present
for the sake of future generations. Whereas it is possible to prosper on this
planet while simultaneously improving the prospects for prosperity of future
generations.
There is a tendency to focus on the immediate impacts of any new technology,
in terms of its functionality and how it is used. Whereas the following
orders of effects have to be distinguished: Direct, first order effects are
the immediate opportunities and effects created by the physical existence of
software technology and the processes involved in its design and production.
Indirect, second order effects are the opportunities and effects arising from
the application and usage of software. Systemic, third order effects, finally,
are the effects and opportunities that are caused by large numbers of people
using software over time.
There is a tendency to overly discount the future - in fact, the far future is
discounted so much that it is considered for free (or worthless). Discount rates
mean that long-term impacts matter far less than current costs and benefits.
Whereas the consequences of our actions play out over multiple timescales,
and the cumulative impacts may be irreversible.

There is a tendency to think that taking small steps towards sustainability
is sufficient, appropriate, and acceptable. Whereas incremental approaches
can end up reinforcing existing behaviours and lure us into a false sense of
security. However, current society is on a path that is so far from sustainability
that deeper transformative changes are needed.
There is a tendency to treat sustainability as a desirable quality of the system
that should be considered once other priorities have been established. Whereas
sustainability is not in competition with a specific set of quality attributes
against which it has to be balanced - it is a fundamental precondition for
the continued existence of the system and influences many of the goals to be
considered in systems design.
There is a desire to identify a distinct completion point to a given project, so
that success can be measured at that point, with respect to a pre-ordained set
of criteria. Whereas measuring success at one point in time fails to capture the
effects that play out over multiple timescales, and so tells us nothing about
long-term success. Criteria for success change over time as we experience
those impacts.
There is a narrow conception of the roles of system designers, developers,
users, owners, and regulators and their responsibilities, and there is a lack of
agency of these actors in how they can fulfill these responsibilities. Whereas
sustainability imposes a distinct responsibility on each one of us, and that
responsibility comes with a right to know the system design and its status,
so that each participant is able to influence the outcome of the technology
application in both design and use.
There is a tendency to interpret the codes of ethics for software professionals
narrowly to refer to avoiding immediate harm to individuals and property.
Whereas it is our responsibility to address the potential harm from the 2nd
and 3rd-order effects of the systems we design as part of our design process,
even if these are not readily quantifiable.
As a result, even though the importance of sustainability is increasingly
understood, the majority of software systems are created unsustainably and
often decrease sustainability instead of increasing it.

Thus, we propose the following initial set of principles and commitments:

Sustainability is systemic. Sustainability is never an isolated property.
Systems thinking has to be the starting point for the transdisciplinary common
ground of sustainability.
Sustainability has multiple dimensions. We have to include those dimen-
sions into our analysis if we are to understand the nature of sustainability in
any given situation.
Sustainability transcends multiple disciplines. Working in sustainability
means working with people from across many disciplines, addressing the
challenges from multiple perspectives.
Sustainability is a concern independent of the purpose of the system.
Sustainability has to be considered even if the primary focus of the system
under design is not sustainability.
Sustainability applies to both a system and its wider contexts. There are at
least two spheres to consider in system design: the sustainability of the system
itself and how it affects the sustainability of the wider system of which it will
be part of.
System visibility is a necessary precondition and enabler for sustainability
design. Strive to make the status of the system and its context visible at
different levels of abstraction and perspectives to enable participation and
informed responsible choice.
Sustainability requires action on multiple levels. Seek interventions that
have the most leverage on a system and consider the opportunity costs:
Whenever you are taking action towards sustainability, consider whether this
is the most effective way of intervening in comparison to alternative actions
(leverage points).
It is possible to meet the needs of future generations without sacrificing
the prosperity of the current generation. Innovation in sustainability can
play out as decoupling present and future needs. By moving away from the
language of conflict and the trade-off mindset, we can identify and enact
choices that benefit both present and future.
Sustainability requires long-term thinking. Consider multiple timescales,
including longer-term indicators in assessment and decisions.

Signed,
Christoph Becker, Ruzanna Chitchyan, Leticia Duboc, Steve Easterbrook,
Martin Mahaux, Birgit Penzenstadler, Guillermo Rodriguez-Navas, Camille
Salinesi, Norbert Seyff, Colin Venters, Coral Calero, Sedef Akinli Kocak and
Stefanie Betz.

V. IMPLICATIONS FOR SOFTWARE ENGINEERING

What implications do these principles and commitments
have on Software Engineering? The present section focuses on
the implications and questions that the principles advocated in
the manifesto raise for SE research and practice.

While some software systems have very explicit sustain-
ability goals, for other cases the role of sustainability is
more subtle. In practice, the opportunities and risks raised
through such interventions have to be understood from mul-
tiple perspectives. This requires conceptual frameworks, but
also a culture that welcomes, encourages and rewards this
understanding and enables these perspectives to be adopted
in the professional practice of system analysts and designers.

In this practice, sustainability cannot simply be seen as
a quality of the systems we design, Crucially, we must
distinguish between a [solution-oriented] system quality and
a [problem-oriented] concern i.e. an ‘interest in a system
relevant to one or more of its stakeholders’ [41]. Consid-
ering only the system under design from a technical and
economic perspective, the [technical] sustainability of a system
architecture, as defined in [42], is clearly a system quality
and can be measured and improved by techniques such as
evolution scenario analysis, architecture compliance checks,
and tracking of architecture-level code metrics. However, in
the overall design of the complex socio-technical system that
contains this system architecture, sustainability needs to be
treated as a design concern of interest to multiple stakeholders
that will drive specific capabilities and qualities in the system
[6]. As such, it will interact in different ways with technical
features and system qualities. Understanding these interactions
and designing the system accordingly is a challenge that
current methods, techniques and tools do not fully address,
and needs a broader, more holistic perspective than product
quality models and architectural metrics can capture.

Consider an imaginary software company called CodeIT.
Their next project is developing a community car sharing
application that specifically intends to satisfy the needs of a
suburban community in a western country such as the US.
Kodi, the project manager, is sensitive to the impact of car
traffic on the environment and painfully aware of the technical
debt carried by the project she just completed. As such, she
is determined to make her best effort to design responsibly
and effectively this time. Is she also aware of the complex
dependencies that will surface in this system, and will she be
able to contribute both to the sustainability of this system and
to the envisioned positive impact it should have?

Kodi could start an investigation into the concerns for
economic, environmental, individual, social, and technical
sustainability by asking initial guiding questions similar to
those suggested in [43]: (1) Does the system have an explicit
sustainability purpose? Can we analyze it in depth using
sustainable development scenario techniques [44]? (2) Which
direct impact does the system have on its operational environ-
ment? Which indirect effects can we identify? (3) Who are
the stakeholders for sustainability? Who are the domain sus-
tainability experts, policy makers, and legal representatives?

These questions highlight that Requirements Engineering is
a key area where systems level thinking can be applied to
identify sustainability concerns, as it translates the domain-
dependent goals and concerns into technical requirements that
can be realized in the implementation of a software system.
Requirements engineers can question user needs, shape peo-
ple’s expectations and use sustainability concerns and apparent
conflicts creatively as drivers for innovation.

Currently, however, Kodi is unlikely to even begin asking
these questions. Corporate culture will often not encourage and
reward her, and the company’s incentive structure may instead
favour short-term thinking based on the economic paradigms
that corporations are operating in. Kodi’s SE education will
not have prepared her for this responsibility nor equipped her
with the mindset to raise these concerns.

Using the manifesto as a guide, how does a commitment to
the principles affect the car sharing scenario?

Sustainability is systemic. This raises fundamental ques-
tions about the relationship between the proposed software
and the problem it is attempting to solve. Often, software
engineers fall into the trap of solutionism [45]. Kodi’s ques-
tions are based on the assumption that the car sharing app
will solve a real problem. However, sometimes, the system the
customer wants and the system that should be built are quite
different. Choosing appropriate system boundaries and actively
critiquing assumptions about these boundaries is important, as
any given choice will privilege some stakeholders and their
concerns, and marginalize others [46].

Sustainability has multiple dimensions. Sustainability
transcends multiple disciplines. Sustainability design in
this scenario will require cross-disciplinary expertise cover-
ing transportation systems, carbon emissions, social network
effects, effects on family structures, but most importantly, the
interaction between these and additional aspects. The problem
of transportation in suburban communities is often a dilemma
to be addressed rather than a problem to be solved, and success
may be a moving target.

Conceptual models, techniques and tools are needed to
communicate, represent, and visualize relationships between
software, systems, and particular aspects of sustainability in
their social, economic, technical, and natural environment.

Sustainability applies to both a system and its wider
contexts. Sustainability requires action on multiple levels.

The car sharing application could focus on action on mul-
tiple levels. For example, the design of the system could
focus on making sharing effortless - an obvious choice. If car
booking becomes as efficient and effortless as using one’s own
car, the volume of traffic could potentially increase, countering
a key argument originally brought forward in support of the
car sharing project. The application design, however, could
also attempt to facilitate joint usage to support a reduction in
total traffic.

System visibility is a necessary precondition and enabler
for sustainability design. Each participant carries a distinct
responsibility, and this comes with the need to be informed
about the status and structure of the socio-technical system

under design and the right to influence the outcomes.
It is possible to meet the needs of future generations

without sacrificing the prosperity of the current gen-
eration. Sustainability requires long term thinking. The
project’s effects will need to be studied over time rather than at
the initial product release date. A long-term requirement that
may surface is the availability of authentic, reliable records
about the system usage and its trends beyond the system life
span so that the phenomena associated with such an initiative
can be analyzed. As a typical case involving the interest of
stakeholders that are not commonly involved in such scenarios,
this example also illustrates that often, there does not need
to be a trade-off between these future needs and current
needs. Well-defined data models and records management
principles benefit current stakeholders as well, and ignoring
them increases the technical debt of the system design.

If she would ask questions like these, could Kodi convince
the stakeholders to see sustainability as the first and foremost
goal, to formulate a project vision with sustainability as a
precondition rather than an additional requirement?

Kodi will need clear guidelines for assessing sustainability
on multiple dimensions and multiple timescales. If she is to
convince the stakeholders with robust arguments and evidence,
she will demand empirically evaluated methods and tools, and
metrics and measures for evaluating effects and their interac-
tions. Showcases that demonstrate how sustainability concerns
can be integrated and balanced with existing quality attributes
and business constraints can support her in understanding and
communicating the benefits and opportunities.

Incentive systems are a way to enable Kodi to ask these
questions. Can we build reward structures that foster the pro-
duction of sustainable systems? Is Kodi encouraged to pursue
sustainable practice? Perhaps, one of the best leverage points
would be to redesign the reward structure in the company to
encourage those who attempt to apply sustainability design
principles. For example, this could involve focusing interven-
tions on strong leverage points rather than weak ones through
fostering responsible consumption instead of improving energy
efficiency, or by giving people information that empowers
them to take action themselves (system visibility).

Universities have started to address sustainability concerns
(beyond technical sustainability) in SE education [47]. The
SE curricula are an opportunity to promote awareness and
provide software engineers with the skills to take into account
other disciplines. Software engineers need systems thinking
skills [45] and sufficient understanding of sustainability to
understand the implications of software systems on different
dimensions of sustainability, ask relevant questions, involve the
right stakeholders, and help to perform the required analysis.
However, current standard references and textbooks for SE
do not yet address such topics [48]. For instance, the term
‘sustainability’ features only once in the latest edition of
SWEBOK [49], under the section finance.

Finally, the codes of ethics of professional associations such
as ACM and IEEE may need to be revisited. For example,
while the current ACM code of ethics [50] acknowledges that

actions with good intentions ‘may lead to harm unexpectedly’,
it defines harm as ‘injury or negative consequences, such as
undesirable loss of information, loss of property, property
damage, or unwanted environmental impacts’. This is not suffi-
cient to cover the potential harmful impacts of technology over
multiple timescales and across all sustainability dimensions.
The code does not consider second and third order effects
adequately in stating, ‘to minimize the possibility of indirectly
harming others, computing professionals must minimize mal-
functions by following generally accepted standards for system
design and testing’.

In contrast, the UK Standard for Professional Engineering
Competence (UK-SPEC) demonstrates explicit awareness and
commitment to sustainability. It defines specific competencies
and commitments for engineering roles with different levels
of responsibility. For each, responsibility for sustainability
plays out in specific ways. For example, engineers need to
demonstrate their commitment and competencies to ‘undertake
engineering activities in a way that contributes to sustainable
development’, including the ‘ability to ... progress environ-
mental, social and economic outcomes simultaneously’ [51].
They are encouraged to ‘do more than just comply with
legislation and codes’ and made aware that they need to ‘seek
multiple views to solve sustainability challenges’ [52]. UK-
SPEC also covers ethical principles and states that ‘[c]odes of
Conduct should oblige members to ... Act in accordance with
the principles of sustainability, and prevent avoidable adverse
impact on the environment and society.’ [51]

It is questionable whether the current codes of the SE
profession meet these expectations.

VI. CONCLUSIONS AND OUTLOOK

Increasing attention is being paid to the broad effects of soft-
ware on society and the need to embody longer-term thinking,
ethical responsibility, and an understanding of sustainability
into the design of software systems. However, the software
profession lacks a common ground that articulates its role in
sustainability design, and a long rooted set of misperceptions
persist in research, theory, and practice. To truly make progress
in understanding the role software plays in the choices we
make as designers of the systems at the backbone of our
society, we need to understand the nature of sustainability and
find a common ground for a conceptual framework.

This article presented a collaborative cross-disciplinary ef-
fort to foster the establishment of such common ground.
The paper consolidates and expands the current understanding
of sustainability concerns within the SE community. The
manifesto unveils and straightens out a number of common
misunderstandings with respect to sustainability and SE. The
principles of sustainability design pose new challenges to
research on sustainability in and through software engineering.

The manifesto will undergo future iterations and stay a
living, publicly accessible document. We envision specific
extensions articulating the concrete impact that the core prin-
ciples should have in particular areas such as RE or software
architecture. The set of fundamental principles stated in the

manifesto is a contribution to the conversation on the role
of the SE profession both in undermining and in enabling a
sustainable future for our planet.

ACKNOWLEDGMENTS

The authors thank all signatories of the manifesto; Sedef
Akinli Kocak and Coral Calero, for comments and contri-
butions; Emily Maemura for contributions to the study of
manifestos; and the reviewers for valuable comments and
suggestions. Part of this work was supported by the Vienna
Science and Technology Fund (WWTF) through the project
BenchmarkDP (ICT2012-046), by the Deutsche Forschungs-
gemeinschaft under project EnviroSiSE (grant PE 2044/1-1),
by FAPERJ (No 41/2013), by CNPQ (No 14/2014) and by
NSERC (RGPIN-2014-06638).

REFERENCES

[1] Software Engineering: Report of a conference sponsored by the NATO
Science Committee, Garmisch, Germany. Brussels, Scientific Affairs
Division, NATO (1969), 7-11 Oct. 1968.

[2] P. Kruchten, “Technical Debt: From Metaphor to Theory and Practice,”
IEEE Software, vol. 29, no. 6, pp. 18–21, Nov. 2012.

[3] P. G. Neumann, “The Foresight Saga, Redux,” Commun. ACM, vol. 55,
no. 10, pp. 26–29, Oct. 2012.

[4] T. Kuny, “The digital dark ages? Challenges in the preservation of
electronic information,” International preservation news, no. 17, 1998.

[5] L. M. Hilty and B. Aebischer, “ICT for Sustainability: An Emerging
Research Field,” in ICT Innovations for Sustainability, L. M. Hilty and
B. Aebischer, Eds. Springer Int. Publishing, 2015, pp. 3–36.

[6] C. Becker, “Sustainability and Longevity: Two Sides of the Same
Quality?” in RE4SuSy: Proceedings of the Third Int. Workshop on RE
for Sustainable Systems. Karlskrona, Sweden: CEUR-WS 1216, 2014.

[7] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M. Mahaux,
B. Penzenstadler, G. Rodriguez-Navas, C. Salinesi, N. Seyff, C. Venters,
C. Calero, S. A. Kocak, and S. Betz, “The Karlskrona manifesto for
sustainability design,” 2014, http://arxiv.org/abs/1410.6968.

[8] The Oxford Dictionary of English. Oxford University Press, 2010.
[9] C. C. Venters, “Software sustainability: The modern tower of Babel,” in

RE4SuSy: Proceedings of the Third Int. Workshop on RE for Sustainable
Systems. Karlskrona, Sweden: CEUR-WS 1216, 2014.

[10] J. A. Tainter, “Social complexity and sustainability,” Journal of Ecolog-
ical Complexity, no. 3, pp. 91–103, 2006.

[11] M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sept 1980.

[12] M. M. Lehman, “Laws of software evolution revisited,” in Proceedings
of the 5th European Workshop on Software Process Technology, ser.
EWSPT ’96. London, UK, UK: Springer-Verlag, 1996, pp. 108–124.

[13] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution:
A roadmap,” in Proc. of the Conference on The Future of Software
Engineering (ICSE ’00). ACM, 2000, pp. 73–87.

[14] R. S. Arnold, Software Maintenance Workshop, Moneterey, California,
December 6-8, 1983: Record. IEEE Computer Society Press, 1984.

[15] Z. Durdik, B. Klatt, H. Koziolek, K. Krogmann, J. Stammel, and
R. Weiss, “Sustainability guidelines for long-living software systems,”
in 28th Intl. Conf. on Software Maintenance, Sept 2012, pp. 517–526.

[16] G. H. Brundtland and World Commission on Environment and Devel-
opment, Our common future. Oxford University Press Oxford, 1987.

[17] M. Wackernagel and W. E. Rees, Our Ecological Footprint: Reducing
Human Impact on the Earth. New Society Publishers, 1996.

[18] SustainAbility. (2010) Sustainability: Can our society endure? [Online].
Available: http://www.sustainability.com/sustainability

[19] C. Hans Carl von, Sylvicultura Oeconomica, oder haußwirthliche
Nachricht und Naturmäßige Anweisung zur wilden Baum-Zucht, 1713.

[20] The Natural Step. (2014) The Four System Conditions of a
Sustainable Society. [Online]. Available: http://www.naturalstep.org/en/
the-system-conditions

[21] R. Heinberg, Peak everything: Waking up to the century of declines.
New Society Publishers, 2007.

[22] J. Dillard, V. Dujon, and M. King, Understanding the Social Dimension
of Sustainability. Taylor & Francis, 2008.

[23] M. Polèse and R. E. Stren, The social sustainability of cities: diversity
and the management of change. University of Toronto Press, 2000.

[24] J. M. Harris and N. R. Goodwin, ”Volume Introduction” in A Survey
of Sustainable Development: Social And Economic Dimensions., ser.
Frontier Issues in Economic Thought. Island Press, 2001.

[25] L. M. Hilty, P. Arnfalk, L. Erdmann, J. Goodman, M. Lehmann,
and P. A. Wäger, “The relevance of information and communication
technologies for environmental sustainability – a prospective simulation
study,” Environmental Modelling & Software, vol. 21, no. 11, pp. 1618
– 1629, 2006.

[26] R. Dodds and R. Venables, Engineering for sustainable development:
Guiding principles. The Royal Society of Engineering, 2005.

[27] J. Elkington, “Enter the triple bottom line,” in The triple bottom line:
Does it all add up?, A. Henriques and J. Richardson, Eds. Routledge,
2004, pp. 1–16.

[28] E. Neumayer, Weak Versus Strong Sustainability: Exploring the Limits
of Two Opposing Paradigms. Edward Elgar, 2003.

[29] H. Daly, Steady-State Economics: Second Edition. Island Press, 1991.
[30] L. M. Hilty et al., “The relevance of information and communication

technologies for environmental sustainability — A prospective simula-
tion study,” Environmental Modelling & Software, 2006.

[31] M. Graham, S. A. Hale, and M. Stephens, Geographies of the World’s
Knowledge. Convoco! Edition, 2011.

[32] E. Williams, “Environmental effects of information and communications
technologies.” Nature, vol. 479, no. 7373, pp. 354–8, Dec. 2011.

[33] Forum for the Future, “The impact of ICT on sustainable development,”
in EITO - European Information Technology Observatory, A. M. Fran-
furt, Ed. European Observatory Interest Group, 2002, pp. 250–283.

[34] R. Goodland, Sustainability: Human, social, economic and environmen-
tal. John Wiley & Sons, 2002.

[35] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process-and product-specific instances,” in Proceedings of the 2013
workshop on Green in/by software engineering. ACM, 2013, pp. 3–8.

[36] D. H. Meadows, “Leverage Points: Places to Intervene in a System,”
The Sustainability Institute, Tech. Rep., 1999.

[37] S. M. Easterbrook, P. N. Edwards, V. Balaji, and R. Budich, “Guest
Editors’ Introduction: Climate Change - Science and Software,” IEEE
Software, vol. 28, no. 6, pp. 32–35, Nov. 2011.

[38] Y. Strengers, “Smart energy in everyday life: Are you designing for
resource man?” interactions, vol. 21, no. 4, pp. 24–31, Jul. 2014.

[39] M. Puchner, Poetry of the revolution : Marx, manifestos, and the avant-
gardes. Princeton: Princeton University Press, 2006.

[40] H. U. Obst, “Manifestos for the Future,” 2010. [Online]. Available:
http://www.e-flux.com/journal/manifestos-for-the-future/# ftn12

[41] ISO/IEC/IEEE, “ISO/IEC/IEEE 42010:2011 - Systems and software
engineering – Architecture description,” online, 2011.

[42] H. Koziolek, D. Domis, T. Goldschmidt, and P. Vorst, “Measuring
architecture sustainability,” Software, IEEE, vol. 30, no. 6, Nov 2013.

[43] B. Penzenstadler, “Infusing Green: Requirements Engineering for Green
in and through software systems,” in RE4SuSy: Proceedings of the Third
Int. Workshop on RE for Sustainable Systems, 2014.

[44] S. Bell and S. Morse, Sustainability Indicators — Measuring the
Immeasurable? Earthscan, 2008, 2nd Ed.

[45] S. Easterbrook, “From Computational Thinking to Systems Thinking,”
in Proc. ICT4S. Atlantis Press, 2014.

[46] G. Midgley, I. Munlo, and M. Brown, “The theory and practice of bound-
ary critique: developing housing services for older people,” Journal of
the Operational Research Society, pp. 467–478, 1998.

[47] E. Eriksson and D. Pargman, “ICT4S reaching out: Making sustainability
relevant in higher education,” in Proc. ICT4S. Atlantis Press, 2014.

[48] B. Penzenstadler and A. Fleischmann, “Teach sustainability in software
engineering?” in 24th IEEE-CS Conference on Software Engineering
Education and Training, 2011.

[49] A. Abran and P. Bourque, SWEBOK: Guide to the software engineering
Body of Knowledge. IEEE Computer Society, 2004.

[50] (1992) ACM Code of Ethics. [Online]. Available: http://www.acm.org/
about/code-of-ethics

[51] UK Standard for Professional Engineering Competence (UK-SPEC).
The Engineering Council, 2014.

[52] Guidance on Sustainability for the Engineering Profession. The
Engineering Council, 2009. [Online]. Available: http://www.engc.org.
uk/about-us/sustainability

